scholarly journals Comparison of temperature and humidity during MIS 11 and MIS 5e interglacials with the Holocene using stable isotopes in tufa deposits from northern France

2021 ◽  
pp. 1-12
Author(s):  
Julie Dabkowski ◽  
Nicole Limondin-Lozouet

Abstract Many recent palaeoclimatic studies have focused on Pleistocene interglacials, especially Marine Isotopic Stages (MIS) 5e and 11, as analogs to our modern interglacial (MIS 1). In continental area, archives allowing comparison between interglacials remain scarce. Calcareous tufa deposits, as they are characteristic of these periods and can provide long, almost continuous, palaeoclimatic records through their isotopic content, appear highly suitable for such investigation. In this paper, δ18O and δ13C values from the three well-dated tufas of Saint-Germain-le-Vasson, Caours, and La Celle are combined to compare temperature and moisture conditions prevailing during MIS 1, 5e, and 11, in the Paris Basin. Both Pleistocene interglacials, and especially their optima, appear stronger than the Holocene: MIS 11 was wetter and warmer than both the Holocene and MIS 5e, which itself experienced wetter conditions than the Holocene. These observations are consistent with palaeontological data from the studied sites, especially malacological assemblages, which record, as at other European tufa sites, a relative depletion of molluscan diversity during the Holocene compared with the Pleistocene (MIS 5 and 11) interglacials.

2011 ◽  
Vol 7 (2) ◽  
pp. 1195-1233 ◽  
Author(s):  
G. Trommer ◽  
M. Siccha ◽  
E. J. Rohling ◽  
K. Grant ◽  
M. T. J. van der Meer ◽  
...  

Abstract. This study investigates the response of Red Sea circulation to sea level and insolation changes during termination II and across the last interglacial, in comparison with termination I and the Holocene. Sediment cores from the central and northern part of the Red Sea were investigated by micropaleontological and geochemical proxies. The recovery of the planktonic foraminiferal fauna following high salinities during MIS 6 took place at similar sea-level stand (~50 m below present day), and with a similar species succession, as during termination I. This indicates a consistent sensitivity of the basin oceanography and the plankton ecology to sea-level forcing. Based on planktonic foraminifera, we find that increased water exchange with the Gulf of Aden especially occurred during the sea-level highstand of interglacial MIS 5e. From MIS 6 to the peak of MIS 5e, northern Red Sea SST increased from 21 °C to 25 °C, with about 3 °C of this increase taking place during termination II. Changes in planktonic foraminiferal assemblages indicate that the development of the Red Sea oceanography during MIS 5 was strongly determined by insolation and monsoon strength. The SW Monsoon summer circulation mode was enhanced during the termination, causing low productivity in northern central Red Sea core KL9, marked by high abundance of G. sacculifer, which – as in the Holocene – followed summer insolation. Core KL11 records the northern tip of the intruding intermediate water layer from the Gulf of Aden and its planktonic foraminifera fauna shows evidence for elevated productivity during the sea-level highstand in the southern central Red Sea. By the time of MIS 5 sea-level regression, elevated organic biomarker BIT values suggest denudation of soil organic matter into the Red Sea and high abundances of G. glutinata, and high reconstructed chlorophyll-a values, indicate an intensified NE Monsoon winter circulation mode. Our results imply that the amplitude of insolation fluctuations, and the resulting monsoon strength, strongly influence the Red Sea oceanography during sea-level highstands by regulating the intensity of water exchange with the Gulf of Aden. These processes are responsible for the observation that MIS 5e/d is characterized by higher primary productivity than the Holocene.


2014 ◽  
Vol 82 (3) ◽  
pp. 604-617 ◽  
Author(s):  
Saxon E. Sharpe ◽  
Jordon Bright

AbstractSediments containing terrestrial and aquatic mollusks and ostracodes from the Ziegler Reservoir fossil site (2705 m elevation) near Snowmass Village, Colorado, span ~130–87 ka (MIS 5e through 5b). The southeastern area of the site where taxa were recovered was a relatively fresh, shallow, well-vegetated wetland during MIS 5e through 5c time, approximately 2 m deep, with a total dissolved solids value of ~200–1000 mg L− 1. The wetland was seasonally or annually variable and groundwater discharged along the margins of the bounding moraine. Groundwater likely contributed solutes to the system and may have contributed 18O-enriched water. Based on stable isotopes from ostracode calcite (δ18OOST and δ13COST), seasonal evaporation occurred and the dissolved inorganic carbon pool was unexpectedly enriched in 13C. The mollusk and ostracode faunas changed little across the MIS 5e/5d/5c boundaries, whereas a distinct change in the ostracode fauna occurred between the deposition of Unit 11 and Unit 13, which corresponds in time to the MIS 5c/5b boundary, indicating some combination of increased surface and/or groundwater flow, a decrease in water temperature, and a freshening and a possible deepening of the wetland.


2011 ◽  
Vol 7 (3) ◽  
pp. 941-955 ◽  
Author(s):  
G. Trommer ◽  
M. Siccha ◽  
E. J. Rohling ◽  
K. Grant ◽  
M. T. J. van der Meer ◽  
...  

Abstract. This study investigates the response of Red Sea circulation to sea level and insolation changes during termination II and across the last interglacial, in comparison with termination I and the Holocene. Sediment cores from the central and northern part of the Red Sea were investigated by micropaleontological and geochemical proxies. The recovery of the planktic foraminiferal fauna following high salinities during marine isotopic stage (MIS) 6 took place at similar sea-level stand (~50 m below present day), and with a similar species succession, as during termination I. This indicates a consistent sensitivity of the basin oceanography and the plankton ecology to sea-level forcing. Based on planktic foraminifera, we find that increased water exchange with the Gulf of Aden especially occurred during the sea-level highstand of interglacial MIS 5e. From MIS 6 to the peak of MIS 5e, northern Red Sea sea surface temperature (SST) increased from 21 °C to 25 °C, with about 3 °C of this increase taking place during termination II. Changes in planktic foraminiferal assemblages indicate that the development of the Red Sea oceanography during MIS 5 was strongly determined by insolation and monsoon strength. The SW Monsoon summer circulation mode was enhanced during the termination, causing low productivity in northern central Red Sea core KL9, marked by high abundance of G. sacculifer, which – as in the Holocene – followed summer insolation. Core KL11 records the northern tip of the intruding intermediate water layer from the Gulf of Aden and its planktic foraminifera fauna shows evidence for elevated productivity during the sea-level highstand in the southern central Red Sea. By the time of MIS 5 sea-level regression, elevated organic biomarker BIT values suggest denudation of soil organic matter into the Red Sea and high abundances of G. glutinata, and high reconstructed chlorophyll-a values, indicate an intensified NE Monsoon winter circulation mode. Our results imply that the amplitude of insolation fluctuations, and the resulting monsoon strength, strongly influence the Red Sea oceanography during sea-level highstands by regulating the intensity of water exchange with the Gulf of Aden. These processes are responsible for the observation that MIS 5e/d is characterized by higher primary productivity than the Holocene.


2019 ◽  
Author(s):  
Jia Jia ◽  
Jianhui Chen ◽  
Xin Wang ◽  
Hao Lu ◽  
Zhiyuan Wang ◽  
...  

Abstract. Previous research has indicated that variations in moisture conditions in arid central Asia (ACA) were out-of-phase with those of monsoonal Asia during the Holocene. In order to investigate this phenomenon, we compared the pattern of moisture variations in ACA and the region dominated by the East Asia summer monsoon (EASM) during the last four interglacials. The results indicate that moisture variations in ACA lagged those in the EASM region by ~ 6 kyr during MIS 5, by −3 kyr during MIS 7, by 3 kyr during MIS 9, and by 7 kyr during MIS 11. We suggest that this lagged pattern in three out of four interglacials was the result of a zonal climatic teleconnection, westerly wind intensity, and evaporation upstream. Overall, our results shed new light on the climatic variability of central Asia and its origins during the Holocene.


2015 ◽  
Vol 11 (10) ◽  
pp. 1395-1416 ◽  
Author(s):  
S. Fujita ◽  
F. Parrenin ◽  
M. Severi ◽  
H. Motoyama ◽  
E. W. Wolff

Abstract. Two deep ice cores, Dome Fuji (DF) and EPICA Dome C (EDC), drilled at remote dome summits in Antarctica, were volcanically synchronized to improve our understanding of their chronologies. Within the past 216 kyr, 1401 volcanic tie points have been identified. DFO2006 is the chronology for the DF core that strictly follows O2 / N2 age constraints with interpolation using an ice flow model. AICC2012 is the chronology for five cores, including the EDC core, and is characterized by glaciological approaches combining ice flow modelling with various age markers. A precise comparison between the two chronologies was performed. The age differences between them are within 2 kyr, except at Marine Isotope Stage (MIS) 5. DFO2006 gives ages older than AICC2012, with peak values of 4.5 and 3.1 kyr at MIS 5d and MIS 5b, respectively. Accordingly, the ratios of duration (AICC2012 / DFO2006) range between 1.4 at MIS 5e and 0.7 at MIS 5a. When making a comparison with accurately dated speleothem records, the age of DFO2006 agrees well at MIS 5d, while the age of AICC2012 agrees well at MIS 5b, supporting their accuracy at these stages. In addition, we found that glaciological approaches tend to give chronologies with younger ages and with longer durations than age markers suggest at MIS 5d–6. Therefore, we hypothesize that the causes of the DFO2006–AICC2012 age differences at MIS 5 are (i) overestimation in surface mass balance at around MIS 5d–6 in the glaciological approach and (ii) an error in one of the O2 / N2 age constraints by ~ 3 kyr at MIS 5b. Overall, we improved our knowledge of the timing and duration of climatic stages at MIS 5. This new understanding will be incorporated into the production of the next common age scale. Additionally, we found that the deuterium signals of ice, δDice, at DF tends to lead the one at EDC, with the DF lead being more pronounced during cold periods. The lead of DF is by +710 years (maximum) at MIS 5d, −230 years (minimum) at MIS 7a and +60 to +126 years on average.


2017 ◽  
Vol 13 (12) ◽  
pp. 1771-1790 ◽  
Author(s):  
Ny Riavo Gilbertinie Voarintsoa ◽  
Loren Bruce Railsback ◽  
George Albert Brook ◽  
Lixin Wang ◽  
Gayatri Kathayat ◽  
...  

Abstract. Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet–dry–wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet–dry–wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.


2020 ◽  
Author(s):  
Deirdre D. Ryan ◽  
Alastair J. H. Clement ◽  
Nathan R. Jankowski ◽  
Paolo Stocchi

Abstract. This paper presents the current state-of-knowledge of the New Zealand (Aotearoa) last interglacial (MIS 5 sensu lato) sea-level record compiled within the framework of the World Atlas of Last Interglacial Shorelines (WALIS) database. Seventy-seven total relative sea-level (RSL) indicators (direct, marine-, and terrestrial-limiting points), commonly in association with marine terraces, were identified from over 120 studies reviewed. Extensive coastal deformation around New Zealand has resulted in a significant range of elevation measurements on both the North Island (276.8 to −94.2 msl) and South Island (173.1 to −70.0 msl) and prompted the use of RSL indicators to estimate rates of vertical land movement; however, indicators lack adequate description and age constraint. Identified RSL indicators are correlated with MIS 5, MIS 5e, MIS 5c, and MIS 5a and indicate the potential for the New Zealand sea-level record to inform sea-level fluctuation and climatic change within MIS 5 (sensu lato). The Northland (North Island) and Otago (South Island) regions, historically considered stable, have the potential to provide a regional sea-level curve in a remote location of the South Pacific across broad degrees of latitude. Future work requires modern analogue information, heights above a defined sea-level datum, better stratigraphic descriptions, and use of improved geochronological methods. The database presented in this study is available open-access at this link: http://doi.org/10.5281/zenodo.4056376 (Ryan et al., 2020a).


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1945 ◽  
Author(s):  
Tomasz Gruszczyński ◽  
Jerzy Małecki ◽  
Anastasiia Romanova ◽  
Maciej Ziułkiewicz

Studies with application of stable isotopes of oxygen and carbon have been performed on calcareous tufa, groundwater and dissolved inorganic carbon (DIC) from the spring mire cupola in Wardzyń. This study was focused on the verification of the a priori hypothesis that the analysed calcareous tufa is a chemical deposit and on the attempt to supplement an earlier scenario of environmental changes in the Subboreal with oscillations of water temperature. The constructed model of chemical and isotope balance, and δ13C determinations in DIC, allowed for calculating ratios of stable isotopes of carbon in particular speciations and in gaseous CO2. The obtained results coupled with δ13C values in calcite indicate that this mineral precipitated from the solution chemically (without the contribution of living organisms). Additionally, it was possible to reconstruct the temperature range at which the calcareous tufa was formed. The reconstructed scenario of changes in the thermal conditions was refined based on δ18O determinations in groundwater and calcite. Accordingly, the oldest calcareous tufa, with an age of about 5500 cal years BP, was formed in cool climate conditions (with average annual temperatures by about 3 °C lower than presently). The formation of younger series of the calcareous tufa took place between 4400–2900 cal years BP and represents a much warmer period with two distinct cooler episodes at 3900 and 3000 cal years BP, respectively. The course of the obtained temperature curves correlates well with the GISP2 curve and curves obtained for other sites in Northern, and Central Europe.


Author(s):  
Jean-François Pastre ◽  
Chantal Leroyer ◽  
Nicole Limondin-Lozouët ◽  
Pierre Antoine ◽  
Christine Chaussé ◽  
...  
Keyword(s):  

2014 ◽  
Vol 53 ◽  
pp. 88-101 ◽  
Author(s):  
F. Bensenouci ◽  
J.L. Michelot ◽  
J.M. Matray ◽  
S. Savoye ◽  
M. Massault ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document