scholarly journals Reservoir Ages in the Western Tropical North Atlantic from One Coral off Martinique Island (Lesser Antilles)

Radiocarbon ◽  
2018 ◽  
Vol 60 (2) ◽  
pp. 639-652
Author(s):  
Martine Paterne ◽  
Nathalie Feuillet ◽  
Guy Cabioch ◽  
Elsa Cortijo ◽  
Dominique Blamart ◽  
...  

AbstractSea surface reservoir ages (R) are reported from radiocarbon (14C) measurements of the annual growth bands of coral Siderastrea siderea collected on the Atlantic coast off Martinique Island, in the Lesser Antilles volcanic arc. Mean values of R are similar between 1835 and 1845 during pre-anthropogenic times at 385±30 yr and between 1895 and 1905 at 382±20 yr when there was a huge eruption from the Montagne Pelée volcano in 1902–1903. Limited 14C aging of sea surface (~40 yr) may be due to enhanced volcanic activity. Variability of R is slightly greater during 1835–1845 than during 1895–1905. It is linked to a moderate increase of ∆14C of 5‰, strengthened by a clear increase of δ18O of 0.4‰. This is attributed to a decrease of the northward advection of the South Atlantic Waters into the western tropical North Atlantic and Caribbean Sea and relative enhanced westward flux of the tropical North Atlantic surface waters, the southern waters having lower values of 14C and δ18O than the North Atlantic ones. From 1835 to 1845, the fraction of the South Atlantic Waters transported up to Martinique Island was reduced from 25% to 15%.

2020 ◽  
Author(s):  
Katherine Lisbeth Ccoica López ◽  
Ricardo Hallak ◽  
Victor Raúl Chavez Mayta

<p>The Tropical Pacific and Tropical Atlantic Ocean modulate the interannual precipitation over the Amazon region and the decadal and interdecadal variation as well. During El Niño Southern Oscillation (ENSO), below-average rainfall is recorded in the North and Northeast of the Basin, while deficit of precipitation is observed in the West and South. On the other hand, during La Niña years, rainfall is above of normal in the North and Northeast of Amazon Basin. However, there are also drought events, such as in 1964 and 2005, unrelated to the El Niño event, but influenced by warm conditions in the Tropical North Atlantic. In fact, the exceptional drought recorded in 2010 was influenced by a combined effect of the El Niño event during the peak of rainy season, followed by warm conditions in the Tropical North Atlantic during final of rainy season and dry season.</p><p>Therefore, the main aim of this study is exploring the Atlantic Sea Surface Temperature (SST) condition in modulating patterns that influence the development of drought and flood events in the Amazon Basin. First of all, the Atlantic Ocean is divided into Tropical North Atlantic (TNA), Tropical South Atlantic (TSA) and Subtropical South Atlantic (STSA), to analyze the behavior of each region separately. Atlantic Index, in each region, is the first principal component (PC1) time series, which comes from the empirical orthogonal function (EOF) analysis applied to Hadley Center Global Sea Ice and Sea Surface Temperature (HadISST) dataset for the 1870-2107 period. The Tropical North Atlantic, Tropical South Atlantic and Subtropical South Atlantic indices show the main years when drought and flood events reaching the Amazon Basin (droughts in 2005, 2010 and 2015, and floods in 2009 and 2012, mainly), and 5-years moving correlations indicate that these three ocean basin have been coupled and decoupled periodically each other in the last century.</p><p>The equatorial Pacific, North Atlantic and South Atlantic indices were also correlated with rainfall over the Amazon for three databases: the Tropical Rainfall Mission Measurements (TRMM), the Global Precipitation Climatology Centre (GPCC) and the HyBAm Observed Precipitation. All three databases showed the same results. An increase of the SST in Eastern Pacific influences in low precipitation over the central and west of the Amazon Basin during the rainy season (December to February), increase of the SST in Central Pacific influences for droughts over the northeast region and the TSA influences in the central Amazon. Increase of the SST in TNA and STSA influences mainly in the dry season (May to September), intensifying it. TNA is responsible for precipitation below normal over the central and west Amazon Basin, while STSA only influences in the central region of the basin. Finally, analysis of extreme events indicate that droughts and floods in the Amazon are intensified (de-intensified) if we consider warm (cold) phases of the AMO (Atlantic Multidecadal Oscillation) and the PDO (Pacific Decadal Oscillation).</p>


2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


Zootaxa ◽  
2012 ◽  
Vol 3425 (1) ◽  
pp. 1 ◽  
Author(s):  
MARC ELÉAUME ◽  
JENS-MICHAEL BOHN ◽  
MICHEL ROUX ◽  
NADIA AMÉZIANE

During the last decades, R/V Meteor and R/V Polarstern deep-sea investigations in the south Atlantic and neighbouringSouthern Ocean collected new samples of stalked crinoids belonging to the families Bathycrinidae, Phrynocrinidae andHyocrinidae which are herein described. The species found are Bathycrinus australis A.H. Clark, 1907b (the most abun-dant), Dumetocrinus aff. antarcticus (Bather, 1908), Hyocrinus bethellianus Thomson, 1876, Feracrinus heinzelleri newspecies, and Porphyrocrinus cf. incrassatus (Gislén, 1933). As only stalk fragments of bathycrinids were frequently col-lected, a distinction between the two Atlantic species B. australis and B. aldrichianus is proposed using characters of co-lumnal articulations. A few specimens attributed to Porphyrocrinus cf. incrassatus, Hyocrinus bethellianus and Hyocrinussp. collected by the N/O Jean Charcot on the Walvis Ridge are also described, plus a new specimen of Porphyrocrinusincrassatus collected in the central mid-Atlantic. Biogeography and close affinities between species in the genera Bathy-crinus and Porphyrocrinus suggest an Antarctic origin of some stalked crinoids among the north Atlantic deep-sea fauna.The presence of B. australis in both the Angola and Cape basins suggests that the Walvis Ridge is not a bio-geographicalbarrier for this relatively eurybathic species, which can attach to hard substrates as well as anchor in sediment. The genusDumetocrinus seems to be an example of colonization of the west Antarctic platform from deeper environment where its ancestor lived.


2012 ◽  
Vol 25 (21) ◽  
pp. 7328-7340 ◽  
Author(s):  
Jenni L. Evans ◽  
Aviva Braun

A 50-yr climatology (1957–2007) of subtropical cyclones (STs) in the South Atlantic is developed and analyzed. A subtropical cyclone is a hybrid structure (upper-level cold core and lower-level warm core) with associated surface gale-force winds. The tendency for warm season development of North Atlantic STs has resulted in these systems being confused as tropical cyclones (TCs). In fact, North Atlantic STs are a regular source of the incipient vortices leading to North Atlantic TC genesis. In 2004, Hurricane Catarina developed in the South Atlantic and made landfall in Brazil. A TC system had been previously unobserved in the South Atlantic, so the incidence of Catarina highlighted the lack of an ST climatology for the region to provide a context for the likelihood of future systems. Sixty-three South Atlantic STs are documented over the 50-yr period analyzed in this climatology. In contrast to the North Atlantic, South Atlantic STs occur relatively uniformly throughout the year; however, their preferred location of genesis and mechanisms for this genesis do exhibit some seasonal variability. Rossby wave breaking was identified as the mechanism for the ST vortex initiation for North Atlantic STs. A subset of South Atlantic STs forms via this mechanism, however, an additional mechanism for ST genesis is identified here: lee cyclogenesis downstream of the Andes in the Brazil Current region—an area favorable for convection. This formation mechanism is similar to development of type-2 east coast lows in the Tasman Sea off eastern Australia.


2003 ◽  
Vol 59 (3) ◽  
pp. 470-475 ◽  
Author(s):  
Gunhild C. Rosqvist ◽  
Pernilla Schuber

AbstractThe location of South Georgia (54°S, 36°W) makes it a suitable site for the study of the climatic connections between temperate and polar environments in the Southern Hemisphere. Because the mass balance of the small cirque glaciers on South Georgia primarily responds to changes in summer temperature they can provide records of changes in the South Atlantic Ocean and atmospheric circulation. We use grey scale density, weight-loss-on-ignition, and grain size analyses to show that the proportion of glacially eroded sediments to organic sediments in Block Lake was highly variable during the last 7400 cal yr B.P. We expect that the glacial signal is clearly detectable above noise originating from nonglacial processes and assume that an increase in glacigenic sediment deposition in Block Lake has followed Holocene glacier advances. We interpret proglacial lake sediment sequences in terms of summer climate warming and cooling events. Prominent millennial-scale features include cooling events between 7200 and 7000, 5200 and 4400, and 2400 and 1600 cal yr B.P. and after 1000 cal yr B.P. Comparison with other terrestrial and marine records reveals that the South Georgian record captures all the important changes in Southern Hemisphere Holocene climate. Our results reveal a tentative coupling between climate changes in the South Atlantic and North Atlantic because the documented temperature changes on South Georgia are anti-phased to those in the North Atlantic.


2008 ◽  
Vol 23 (2) ◽  
pp. 115-125 ◽  
Author(s):  
Fred Kucharski ◽  
Dierk Polzin ◽  
Stefan Hastenrath

Targeted numerical modelling experimaents are conducted to complement the previous empirical diagnostics of circulation mechanisms leading from sea surface temperature (SST) departures in the equatorial Pacific in January to anomalies in the March-April rainy season of Brazil's Nordeste. A weak interhemispheric northward directed SST gradient in the Atlantic favors a more southerly position of the hydrostatically controlled low pressure trough, embedded in which is the Intertropical Convergence Zone (ITCZ), which is the main rainbearing system for the Nordeste. In addition, anomalously warm waters in the equatorial Pacific in January tend to be followed by Nordeste drought. The underlying chain of causalities has been explored by empirical diagnostics and numerical modelling. During El Nino years, an upper-tropospheric wave train extends from the equatorial eastern Pacific to the tropical North Atlantic, affecting the patterns of upper-tropospheric topography and divergence, and hence of vertical motion over the Atlantic. This leads to a weaker meridional pressure gradient on the equatorward flank of the North Atlantic subtropical high, weaker North Atlantic tradewinds, an anomalously far northerly ITCZ position and thus Nordeste drought. The previous empirical diagnostics are overall supported by the modelling experiments.


1976 ◽  
Vol 54 (9) ◽  
pp. 1538-1541
Author(s):  
R. E. Zurbrigg ◽  
W. B. Scott

A new myctophid species, Diaphus hudsoni, was captured in the South Atlantic Ocean, and is described. It is similar to Diaphus subtilis Nafpaktitis, which occurs in the North Atlantic Ocean, but is definitely distinct with its slender, more numerous gill rakers (total 23–25), and non-continuous AOp–Prc series. The AO series numbers 5 + 5–6. The holotype is deposited in the Royal Ontario Museum, ROM 27569.


1974 ◽  
Vol 31 (10) ◽  
pp. 1666-1667
Author(s):  
Dale R. Calder

Boreohydra simplex was collected at a depth of 400 m in Cabot Strait, eastern Canada; this solitary, mud-dwelling hydroid is previously unreported from the western North Atlantic. Elsewhere, it has been found along the coasts of Scandinavia, Britain, and Iceland in the North Atlantic, and from South Georgia in the South Atlantic.


Sign in / Sign up

Export Citation Format

Share Document