Influence of the height of the vortex generators in the control of shock-induced separation of the boundary layers

2008 ◽  
Vol 112 (1133) ◽  
pp. 415-420
Author(s):  
G. S. Cohen ◽  
F. Motallebi

Abstract Experiments have been conducted to assess the effects that sub-boundary-layer vortex generators (SBVGs) have on reducing normal shock-induced turbulent boundary-layer separation. The freestream Mach number and Reynolds number were M = 1·45 and 15·9 × 106/m, respectively. Detailed measurements of a fully developed, flat plate turbulent boundary layer were used in order to assess the performance of ten different SBVG configurations. The SBVG performance was assessed by comparing total pressure profiles measured upstream of separation and downstream of reattachment. Static pressure distributions, near surface total pressure distributions, oil flow visualisation and Schlieren photographs were also used. The effect of SBVG height was investigated. The results show the largest SBVGs with height, h = 55%δ, provided the greatest static pressure recovery and maximum mixing. However, the shock pressure rise (wave drag) was highest for this case.

2006 ◽  
Vol 110 (1106) ◽  
pp. 215-226 ◽  
Author(s):  
G. S. Cohen ◽  
F. Motallebi

Abstract The results of an investigation into the effects that sub-boundary layer vortex generators (SBVGs) have on reducing normal shock-induced turbulent boundary-layer separation are presented. The freestream Mach number and Reynolds number were M = 1·45 and 15·9 × 106/m, respectively. Total pressure profiles, static pressure distributions, surface total pressure distributions, oil flow visualisation and Schlieren photographs were used in the results analysis. The effects of SBVG height, lateral spacing and location upstream of the shock were investigated. A novel curved shape SBVG was also evaluated and comparisons against the conventional flat vane type were made. The results show that in all but two cases, separation was completely eliminated. As expected, the largest SBVGs with height, h = 55%δ, provided the greatest pressure recovery and maximum mixing. However, the shock pressure rise was highest for this case. The experiments showed that the mid height SBVG array with the largest spacing provided similar results to the SBVG array with the largest height. Reducing the distance to shock to 10δ upstream also showed some improvement over the SBVG position of 18δ upstream. It was suggested that total elimination of the separated region may not be required to achieve a balance of improved static pressure recovery whilst minimising the pressure rise through the shock. The effect of curving the SBVGs provided an improved near wall mixing with an improved static and surface total pressure recovery downstream of the separation line. The optimum SBVG for the current flow conditions was found to be the curved vanes of h = 40%δ, with the largest spacing, located at 18δ upstream of the shock. Overall, it was apparent from the results that in comparison to larger vortex generators with a height comparable to δ, for SBVGs the parameters involved become more important in order to obtain the highest degree of mixing from a given SBVG configuration.


2001 ◽  
Vol 124 (1) ◽  
pp. 136-142 ◽  
Author(s):  
R. K. Sullerey ◽  
Sourabh Mishra ◽  
A. M. Pradeep

An experimental investigation was undertaken to study the effect of various fences and vortex generator configurations in reducing the exit flow distortion and improving total pressure recovery in two-dimensional S-duct diffusers of different radius ratios. Detailed measurements including total pressure and velocity distribution, surface static pressure, skin friction, and boundary layer measurements were taken in a uniform inlet flow at a Reynolds number of 7.8×105. These measurements are presented here along with static pressure rise, distortion coefficient, and the transverse velocity vectors at the duct exit determined from the measured data. The results indicate that substantial improvement in static pressure rise and flow quality is possible with judicious deployment of fences and vortex generators.


2009 ◽  
Vol 76 (4) ◽  
Author(s):  
A. Zare Shahneh ◽  
F. Motallebi

The results of an investigation into the effects that sub-boundary layer vortex generators (SBVGs) have on reducing normal shock-induced turbulent boundary layer separation are presented. The freestream Mach number and Reynolds number were M=1.45 and R=15.9×106/m, respectively. Total pressure profiles, static pressure distributions, surface total pressure (Preston pressure) distributions, oil flow visualization, and Schlieren photographs were used in the result analysis. The effects of SBVG height and the location upstream of the shock were investigated. A novel tetrahedron shape SBVG with different lengths (30 mm and 60 mm) was used for these experiments. The effect of streamwise location of the longer SBVG on the interaction was also investigated. The location of the shock wave was controlled by an adjustable choke mechanism located downstream of the working section. The results show that an increase in the distance for the longer SBVG from 17.4δR to 25.5δR did not remove the separation entirely, but the shorter SBVG provided higher total pressure distribution within the boundary layer in the recovery region. This also provided a healthier boundary layer profile downstream of the interaction region with lower displacement thickness and shape factor.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Yanfeng Zhang ◽  
Shuzhen Hu ◽  
Ali Mahallati ◽  
Xue-Feng Zhang ◽  
Edward Vlasic

This work, a continuation of a series of investigations on the aerodynamics of aggressive interturbine ducts (ITD), is aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries. A systematic experimental and computational study was carried out by varying duct outlet-to-inlet area ratios (ARs) and mean rise angles while keeping the duct length-to-inlet height ratio, Reynolds number, and inlet swirl constant in all four geometries. The flow structures within the ITDs were found to be dominated by the boundary layer separation and counter-rotating vortices in both the casing and hub regions. The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend, whereas the duct AR mainly governed the second bend's static pressure rise. The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices. At high mean rise angle, the separation became stronger at the casing's first bend and moved farther upstream. At high ARs, a two-dimensional separation appeared on the casing and resulted in increased loss. Pressure loss penalties increased significantly with increasing duct mean rise angle and AR.


Author(s):  
Ahmed M. Diaa ◽  
Mohammed F. El-Dosoky ◽  
Mahmoud A. Ahmed ◽  
Omar E. Abdelhafez

Secondary flows are noxious to axial compressor performance. To overcome and control those secondary flows, vortex generators are used as a passive control device. Controlling secondary flows will lead to a further improvements in the compressor performance. A new design of vortex generator is considered in this investigation in order to control secondary flows in axial compressor cascade at design and off-design conditions. Numerical simulations of a three-dimensional compressible turbulent flow have been performed to explore the effect of the vortex generators on the reduction of secondary flows. Six different incidence angles are used for the off-design operation investigations. Based on the simulation results, the pressure, velocity, and streamline are used to follow up the development of the secondary flows. Thence, total pressure loss coefficient, static pressure rise coefficient, difference in flow deflection angle, and diffusion factor are estimated. Results indicate that vortex generators have a significant effect on the development of secondary flows at off design operation as they cause a reduction in total pressure loss, they also affect the loading behavior of the cascade as they cause a slight change in the cascade deflection, and a slight decrease in the diffusion factor which causes unloading of the blade. Static pressure rise is significantly reduced at negative incidence angles while a slight reduction occurs at positive incidence angles. In a word, the new design of the vortex generator enhances the cascade aerodynamic performance and enlarges the operating range of the cascade towards the positive incidence region.


2011 ◽  
Vol 35 (8) ◽  
pp. 1505-1513 ◽  
Author(s):  
Davide Lengani ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Francesco Bertini

1990 ◽  
Author(s):  
L. Adjlout ◽  
S. L. Dixon

The purpose of this paper is to describe an investigation of the flow within and downstream of a turbine blade cascade of high aspect ratio. A detailed experimental investigation into the changes in the endwall boundary layer in the cascade (100deg camber angle) and total pressure loss downstream of the cascade was carried out. Flow visualisation was used in order to obtain detailed photographs of the flow patterns on the endwall and for exhibiting the trailing edge vortices. Pressure measurements were carried out using a miniature cranked Kiel probe for three planes downstream of the cascade, with two levels of turbulence intensity of the free-stream. Pressure distribution on the blade were measured at three spanwise locations, namely 4%, 12%, and 50% of the full-span from the wall. Hot wire anenometry combined with a spectrum analyser program was used to determine the frequencies of the flow oscillations. The change in turbulence level of the free stream has a significant influence on all three pressure distributions. The striking difference between two of the pressure distributions is in the aft half of the suction side where the distribution with the lower turbulence intensity has the larger lift. The oil flow visualisation reveals what appears to be two separation lines within the passage and are believed to originate from the horseshoe vortex. The pitchwise-averaged total pressure loss coefficient increases with the distance of the measurement plane downstream of the cascade blades. A substantial part of this loss increase close to the wall is caused by the high rate of shear of the new boundary layer on the endwall.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 268
Author(s):  
Kung-Ming Chung ◽  
Kao-Chun Su ◽  
Keh-Chin Chang

A convex corner models the upper surface of a deflected flap and shock-induced boundary layer separation occurs at transonic speeds. This study uses micro-vortex generators (MVGs) for flow control. An array of MVGs (counter-rotating vane type, ramp type and co-rotating vane type) with a height of 20% of the thickness of the incoming boundary layer is installed upstream of a convex corner. The surface pressure distributions are similar regardless of the presence of MVGs. They show mild upstream expansion, a strong favorable pressure gradient near the corner’s apex and downstream compression. A corrugated surface oil flow pattern is observed in the presence of MVGs and there is an onset of compression moving downstream. The counter-rotating vane type MVGs produce a greater reduction in peak pressure fluctuations and the ramp type decreases the separation length. The presence of MVGs stabilizes the shock and shock oscillation is damped.


The skin friction of the wall of a wind tunnel has been measured at a Mach number of 2.5 using the surface-tube technique. The Reynolds number (with the distance from the throat as the representative length) was of the order of 2 to 3 millions and the boundary layer was turbulent. The skin friction coefficient was much less than for a very small Mach number (the incompressible case) and the amount of the decrease agreed with calculation. The effect of a shock-wave of strength 2 was also investigated—the strength of a shock-wave is defined as the pressure rise through it divided by the static pressure in front of it. The shock-wave only affected the boundary layer for a few thicknesses upstream of its point of impingement even though it was strong enough to cause local separation. The results show: ( а ) That the surface, or Stanton, tube is a reliable means of measuring skin friction in spite of the large values (over a million with the second as the unit of time) of the velocity gradient at the wall, and that the skin friction coefficient does decrease with Mach number in the manner predicted by calculation. ( b ) That disturbances due to a shock-wave impinging on a turbulent boundary layer are only propagated upstream a few multiples of the boundary layer thicknesses even when the shock-wave is strong enough to cause local separation.


Sign in / Sign up

Export Citation Format

Share Document