Pulse-frequency modulated guidance laws for a mortar missile with a pulse jet control mechanism

2015 ◽  
Vol 119 (1213) ◽  
pp. 389-405 ◽  
Author(s):  
M. Pavic ◽  
B. Pavkovic ◽  
S. Mandic ◽  
S. Zivkovic ◽  
D. Cuk

AbstractThe impact point dispersion of mortar missiles can be drastically reduced with a control ring of lateral pulse jets located around the centre of gravity and a homing head to measure or to derive estimates of appropriate missile-target states, e.g. the line-of-sight rates. A simulation model including a missile as a six-degree-of-freedom vehicle, a jet pulse flight control system, and a relative missile-to-target motion was used for the comparison of four guidance laws i.e. proportional navigation guidance, augmented proportional navigation, augmented proportional navigation with rendezvous, and adaptive sliding-mode guidance. This paper focuses on the efficiency of pulse jet control on miss distance, and thus makes the assumption that sensor measurements and the guidance states required to apply each of the guidance laws are perfectly known. Proportional navigation and the adaptive sliding mode guidance exhibit a large miss distance due to limited control authority. Augmented proportional navigation is slightly better than augmented proportional navigation with rendezvous for the same design parameters and they both give small miss distances with limited control authority, but they both require a free gyro. A proper selection of the design parameters — the number of pulse jets and the magnitude of the individual pulse jet thrust for a particular dispersion of flight parameters and the instant of the guidance start — is required to achieve optimum dispersion reduction. The minimum intensity of the individual pulse jet impulse required for the ‘pin point’ accuracy (the circular error probable smaller than 1m) of the mortar missile was determined for all presented guidance laws considering dispersion from the nominal trajectory.

Author(s):  
Sheng Sun ◽  
Di Zhou ◽  
Jingyang Zhou ◽  
Kok Lay Teo

The true proportional navigation guidance law, the augmented proportional navigation guidance law, or the adaptive sliding-mode guidance law, is designed based on the planar target-to-missile relative motion dynamics. By a proper construction of a nonlinear Lyapunov function for the line-of-sight angular rates in the three-dimensional guidance dynamics, it is shown that the three guidance laws mentioned above are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first-order lag, we design three-dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (3) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. Thus, the proposed nonlinear Lyapunov function for the line-of-sight angular rates is a generalized function for designing three-dimensional guidance laws. Simulation results of a missile interception mission show that the proposed guidance laws are highly effective.


Author(s):  
Hui Wang ◽  
Jiang Wang ◽  
Defu Lin

To study the optimal impact-angle-control guidance problem with multiple terminal constraints, a generalized optimal impact-angle-control guidance law with terminal acceleration response constraint (GOIACGL-TARC) is proposed. In the deriving, a time-to-go − nth power weighted object function is adopted to derived the GOIACGL-TARC and a general expression of GOIACGL-TARC is presented. Based on the general expression of GOIACGL-TARC, three guidance laws, GOIACGL-TARC1/TACC0/TACC1 are proposed and the inheritance relationship between GOIACGL-TACC0/TACC1/TARC1 and the conventional optimal guidance law with impact angle constraint is demonstrated. Performance analysis of the proposed guidance laws shows that in the case of GOIACGL-TACC0, the terminal acceleration is not zero at n = 0 and only as n > 0, the terminal acceleration converges to zero; in the case of GOIACGL-TACC1 and GOIACGL-TARC1, GOIACGL-TARC1 can guarantee the acceleration response to reach the exactly zero value but GOIACGL-TACC1 cannot, which can only guarantee the acceleration command to reach the exactly zero value. It is pointed out that compared with the biased proportional navigation guidance law, GOIACGL-TARC1 has an outstanding guidance performance in acceleration response, miss distance, and terminal impact angle error.


2014 ◽  
Vol 598 ◽  
pp. 723-730
Author(s):  
Mohamed Zakaria ◽  
Talaat Ibrahim ◽  
Alaa El Din Sayed Hafez ◽  
Hesham Abdin

Several conditions affect the performance of guidance law like target parameters or delayed line of sight rate. A variable navigation ratio is used to enhance the performance of guidance law. In this paper a Genetic Algorithm is used to formulate different forms of variable gains and measure the miss distance. An optimization process is running to find the minimum miss distance. The average values and standard deviation of miss distance for all genetic algorithm individuals are calculated to measure the performance and robustness of guidance law. Two guidance laws are considered proportional navigation (PN) and differential geometry (DG). The simulation results show that the proportional navigation is superior to differential geometry performance in the presence of delayed line of sight rate.


2017 ◽  
Vol 67 (3) ◽  
pp. 332 ◽  
Author(s):  
M. Ugur Akcal ◽  
N. Kemal Ure

<p>This study presents a predictive guidance scheme for tactical missiles. The modern day targets, with improved manoeuverability, have revealed insufficient performance of the conventional guidance laws. The underlying cause of this poor performance is the reactive nature of the conventional guidance laws such as proportional navigation (PN) and pure pursuit (PP). Predictive guidance offers an alternative approach to the classical methods by taking proactive actions by estimating target’s future trajectory. However, most of the existing predictive guidance approaches assume that the interceptor have a model of the target dynamics. A guidance strategy is developed in this study, that can learn the target dynamics iteratively and adapt the interceptor actions accordingly. A recursive least squares (RLS) estimation algorithm is employed for learning and estimating the possible future target positions, and a fixed horizon nonlinear program is employed for selecting the optimal interception action. Monte-Carlo simulations show that the guidance algorithm introduced in this work demonstrates a significantly improved performance compared to the alternatives in terms of interception time and miss distance.</p>


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988639
Author(s):  
Xuan-Ping Liao ◽  
Jing Zhang ◽  
Ke-Bo Li ◽  
Lei Chen

A novel adaptive sliding mode guidance law is proposed in this article. The target is assumed to have an arbitrarily but upper bounded maneuvering acceleration which is considered as the system disturbances and uncertainties. The guidance law is consisted of three terms. The first one is a proportional navigation–type term. The second one is a term used for compensating the target maneuvering acceleration. And the last one is a term for controlling the convergence time of the line-of-sight angular rate. In this guidance law, the upper bound of the target acceleration is estimated by an adaptive estimator with a tunable updating law. Hence, the prior knowledge of the upper bound of the target acceleration is not essential for this guidance law. The novel adaptive sliding mode guidance law can guarantee the asymptotical convergence of the line-of-sight rate to zero or its neighborhood, or even the finite time convergence of the line-of-sight rate conditionally. Finally, the new theoretical findings are demonstrated by numerical simulations.


2014 ◽  
Vol 118 (1202) ◽  
pp. 435-451 ◽  
Author(s):  
J.H. Xiong ◽  
S.J. Tang ◽  
J. Guo ◽  
T.N. Wang

AbstractAn adaptive sliding mode guidance law guiding the line-of-sight angular rate to converge to zero was highly appraised. However, compared with the conventional proportional navigation law, adaptive sliding mode guidance law leads to large acceleration demand of the interceptor before the line-of-sight angular rate converging to zero, especially in a situation where the target has strong manoeuvrability as well as high velocity. In this paper, a strategy making the coefficients of the guidance law vary according to a fuzzy rule is proposed. Smaller guidance coefficients are selected at the beginning of the terminal guidance. Therefore, the guidance command is reduced and a smaller acceleration of the interceptor is incurred. As the coefficients grow to the fixed and desired values, the line-of-sight angular rate converges to zero rapidly, so that the convergence to the sliding surface is guaranteed. It is concluded that the fuzzy variable coefficients strategy is highly effective for tail-chase, head-on interception and head pursuit engagements as shown in the simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document