On the Aerodynamic Design of Slender Wings

1959 ◽  
Vol 63 (588) ◽  
pp. 709-721 ◽  
Author(s):  
E. C. Maskell ◽  
J. Weber

Summary:—Since flow separation occurs readily from a highly swept leading edge, but gives rise in general to a steady flow, it is proposed that the rational approach to the aerodynamic design of slender wings is to attempt to control, rather than to suppress, these separations. This leads to the suggestion that the leading edges should be sharp, and that the wing should be shaped so as to make them attachment lines at one attitude (the design attitude) at which classical wing theory can be applied. It is argued, further, that if the leading edge separations are to develop regularly with change of attitude of the wing, separation must occur only from the trailing edge at the design attitude; and the velocity field favourable to boundary layer development without separation forward of the trailing edge is discussed. Subject to the restrictions thus imposed on the design, low drag is sought at the design attitude. This leads to the consideration of a particular class of doubly curved mean surfaces satisfying the leading edge condition, onto which thickness distributions are superposed so as to provide favourable velocity fields together with low drag. A number of examples are considered, using slender thin wing theory for flexibility, to illustrate the manner in which plan form and thickness distributions affect the pressure distribution, and to indicate the relatively high lift/drag ratios which seem feasible. Some consideration is given to the limitations of the theory used and to the further developments which seem desirable.

1969 ◽  
Vol 73 (708) ◽  
pp. 1027-1028
Author(s):  
Henri Deplante

The interest of wings with variable sweepback springs directly from pure commonsense and appeals to no profound knowledge of aerodynamics for its justification. To realise the advantage of variable geometry, it is enough to know that only a wing of small relative thickness is capable of good performance at supersonic speeds and that by increasing the sweepback from 20° to 70° the thickness of a wing is divided by about 2. In the advanced position, the wing offers its full span to the airstream and with high-lift devices in action (leading-edge slats and trailing-edge flaps combined), the aeroplane can develop the considerable lift necessary for take-off and landing as well as for break-through and for slow approach. Wings still advanced but slats, flaps and undercarriage retracted, the aeroplane is in excellent maximum fineness condition for protracted cruising at subsonic speed or for a long wait. As soon as transonic (Mach No of more than 0-8) or supersonic speeds are in question, the wings are progressively folded back.


2004 ◽  
Vol 127 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Xue Feng Zhang ◽  
Howard Hodson

An experimental investigation of the combined effects of upstream unsteady wakes and surface trips on the boundary layer development on an ultra-high-lift low-pressure turbine blade, known as T106C, is described. Due to the large adverse pressure gradient, the incoming wakes are not strong enough to periodically suppress the large separation bubble on the smooth suction surface of the T106C blade. Therefore, the profile loss is not reduced as much as might be possible. The first part of this paper concerns the parametric study of the effect of surface trips on the profile losses to optimize the surface trip parameters. The parametric study included the effects of size, type, and location of the surface trips under unsteady flow conditions. The surface trips were straight cylindrical wires, straight rectangular steps, wavy rectangular steps, or wavy cylindrical wires. The second part studies the boundary layer development on the suction surface of the T106C linear cascade blade with and without the recommended surface trips to investigate the loss reduction mechanism. It is found that the selected surface trip does not induce transition immediately, but hastens the transition process in the separated shear layer underneath the wakes and between them. In this way, the combined effects of the surface trip and unsteady wakes further reduce the profile losses. This passive flow control method can be used over a relatively wide range of Reynolds numbers.


Author(s):  
Joan G. Moore ◽  
John Moore

It is obvious that the Reynolds normal stresses uu¯ should always be positive in all directions, i.e. the computed turbulence stresses should be realizable. However, the commonly used two-equation turbulence models do not incorporate realizability. They take the turbulent viscosity as cμk2/ε with cμ a constant, and frequently generate negative normal stresses far from walls in the nominally inviscid sections of turbomachinery flows. Pressure gradients due to leading edge stagnation and blade turning create an inviscid strain field. These strains cause the calculation of negative normal stresses over significant portions of the flow field. The result can be erroneous increases in turbulence kinetic energy upstream of the leading edge by a factor of ten or more. This erroneous turbulence is then convected around the blade and through the blade row, significantly affecting the computed boundary layer development and profile losses. Frequently the problem of overproduction is avoided by using artificially high values of the dissipation, ε, at the inlet. But this incorrect procedure is not needed when realizability is incorporated in the turbulence model. The paper reviews some methods and models which ensure realizability in two-equation turbulence models. The extent of the problem and its solution are illustrated with examples from compressor and turbine cascades.


Author(s):  
Wenhua Duan ◽  
Jian Liu ◽  
Weiyang Qiao

Abstract A numerical analysis of the effect of Mach number on the boundary layer development and aerodynamic performance of a high-lift, after loaded low pressure turbine blade is presented in this paper. The turbine blade is designed for the GTF engine and works in a low Reynolds number, high Mach number environment. Three different isentropic exit Mach numbers (0.14, 0.87 and 1.17) are simulated by large eddy simulation method, while the Reynolds number based on the axial chord length of the blade and the exit flow velocity is kept the same (1 × 105). The condition Mais,2 = 0.14 represents the lowspeeed wind tunnel environment which is usually used in the low pressure turbine investigation. The condition Mais,2 = 0.87 represents the design point of the turbine blade. The condition Mais,2 = 1.17 represents the severe environment when the shock wave shows up. A comparison of the boundary layer development is made and the total pressure loss results from the boundary layer is discussed.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Sun Shuang ◽  
Lei Zhijun ◽  
Lu Xin’gen ◽  
Zhang Yanfeng ◽  
Zhu Junqiang

AbstractThe combined effects of upstream wakes and surface roughness on boundary layer development have been investigated experimentally to improve the performance of ultra-high-lift low-pressure turbine (LPT) blades. The measurement was performed on a linear cascade with an ultra-high-lift LP turbine profile named IET-LPTA with a Zweifel loading coefficient of about 1.4. The wakes were simulated by the moving cylindrical bars upstream of the cascade. The surface roughness was achieved using sandpaper strips which were placed into the slot incised on the blades surfaces. Three types of slots combined with three types of roughness heights formed a large measurement matrix. The roughness with a height of 8.82 μm (1.05×10


Author(s):  
Xingen Lu ◽  
Yanfeng Zhang ◽  
Wei Li ◽  
Shuzhen Hu ◽  
Junqiang Zhu

The laminar-turbulent transition process in the boundary layer is of significant practical interest because the behavior of this boundary layer largely determines the overall efficiency of a low pressure turbine. This article presents complementary experimental and computational studies of the boundary layer development on an ultra-high-lift low pressure turbine airfoil under periodically unsteady incoming flow conditions. Particular emphasis is placed on the influence of the periodic wake on the laminar-turbulent transition process on the blade suction surface. The measurements were distinctive in that a closely spaced array of hot-film sensors allowed a very detailed examination of the suction surface boundary layer behavior. Measurements were made in a low-speed linear cascade facility at a freestream turbulence intensity level of 1.5%, a reduced frequency of 1.28, a flow coefficient of 0.70, and Reynolds numbers of 50,000 and 100,000, based on the cascade inlet velocity and the airfoil axial chord length. Experimental data were supplemented with numerical predictions from a commercially available Computational Fluid Dynamics code. The wake had a significant influence on the boundary layer of the ultra-high-lift low pressure turbine blade. Both the wake’s high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the ultra-high-lift low pressure turbine airfoil. The upstream unsteady wake segments convecting through the blade passage behaved as a negative jet, with the highest turbulence occurring above the suction surface around the wake center. Transition of the unsteady boundary layer on the blade suction surface was initiated by the wake turbulence. The incoming wakes promoted transition onset upstream, which led to a periodic suppression of the separation bubble. The loss reduction was a compromise between the positive effect of the separation reduction and the negative effect of the larger turbulent-wetted area after reattachment due to the earlier boundary layer transition caused by the unsteady wakes. It appeared that the successful application of ultra-high-lift low pressure turbine blades required additional loss reduction mechanisms other than “simple” wake-blade interaction.


Author(s):  
Samuel C. T. Perkins ◽  
Alan D. Henderson

This paper investigates the influence of Reynolds Number and incidence on boundary layer development at the leading edge of a controlled diffusion (CD) stator blade with circular arc leading edge profile. Steady flow measurements were made inside a large scale 2D compressor cascade at Reynolds numbers of 260,000 and 400,000 for a range of inlet flow angles corresponding to both positive and negative incidence. Detailed static pressure measurements in the leading edge region show the time-mean boundary layer development through the velocity overspeed and following region of accelerating flow on the suction surface. Separation bubbles at the leading edge of the pressure and suction surfaces trigger the boundary layer to undergo an initial and rapid transition to turbulence. On the pressure surface, the bubble forms at all values of incidence tested, whereas on the suction surface a bubble only forms for incidence greater than design. In all cases the bubble length was seen to reduce significantly as Reynolds number is increased. These trends are supported by surface flow visualization results. Quasi-wall shear stress measurements from hot-film sensors were interpreted using a hybrid threshold peak-valley-counting algorithm to yield time-averaged turbulent intermittency on each blade surface. These results in combination with raw quasi-wall shear stress traces show evidence of boundary layer relaminarization on the suction surface, downstream of the leading edge velocity overspeed in the favorable pressure gradient leading to peak suction. The relaminarization process is observed to become less effective as Reynolds number and inlet flow angle are increased. The boundary layer development is shown to have a large influence on the total blade pressure loss. At negative incidence, loss was seen to increase as Reynolds number is decreased, and in contrast at positive incidence, the opposite trend was displayed.


Sign in / Sign up

Export Citation Format

Share Document