scholarly journals Orally administeredLactobacillus plantarumreduces pro-inflammatory interleukin secretion in sera fromListeria monocytogenesinfected mice

2007 ◽  
Vol 99 (4) ◽  
pp. 819-825 ◽  
Author(s):  
Elena Puertollano ◽  
María A. Puertollano ◽  
Lidia Cruz-Chamorro ◽  
Gerardo Álvarez de Cienfuegos ◽  
Alfonso Ruiz-Bravo ◽  
...  

Lactic acid bacteria have traditionally been thought to have immunomodulating effects. To verify this property,Lactobacillus plantarumwas orally administered to mice (5 × 107colony forming units (c.f.u.)), prior to infection withListeria monocytogenesin order to evaluate the host resistance against an infectious micro-organism and to better define the influence ofL. plantarumon such responses. Balb/c mice were treated daily withL. plantarumor received PBS (sham-treated mice as controls) for 4 weeks. Subsequently, mice were intravenously infected with a clinical isolate ofL. monocytogenes. Our study revealed that the administration ofL. plantarumdid not significantly increase the survival (P = 0·13) of mice (fifteen in each group) afterL. monocytogenesinfection (106 c.f.u./ml), whereas a sub-lethal dose ofL. monocytogenes(105 c.f.u./ml) was eliminated from liver and spleen 5 d after the challenge in bothL. plantarum- and sham-treated mice (n5). Nevertheless, the levels of IL-1β and IL-6 from sera of orally administeredL. plantarumwere drastically reduced at 0, 4 (P < 0·01) and 6 d afterL. monocytogenesinfection, whereas TNF-α production was unaltered. In conclusion, administration ofL. plantarumreduced pro-inflammatory IL production after challenge withL. monocytogenes, although it did not significantly impact the survival of mice. We speculate thatL. plantarumcould exert anti-inflammatory effects, which may represent an important model to reduce inflammatory disorders. Therefore, further studies in human subjects should determine the role ofL. plantarumas an immunomodulatory micro-organism and its relationship in the host protection to pathogens.

2020 ◽  
Vol 44 (4) ◽  
pp. 454-489 ◽  
Author(s):  
Francesca De Filippis ◽  
Edoardo Pasolli ◽  
Danilo Ercolini

ABSTRACT Lactic acid bacteria (LAB) are present in foods, the environment and the animal gut, although fermented foods (FFs) are recognized as the primary niche of LAB activity. Several LAB strains have been studied for their health-promoting properties and are employed as probiotics. FFs are recognized for their potential beneficial effects, which we review in this article. They are also an important source of LAB, which are ingested daily upon FF consumption. In this review, we describe the diversity of LAB and their occurrence in food as well as the gut microbiome. We discuss the opportunities to study LAB diversity and functional properties by considering the availability of both genomic and metagenomic data in public repositories, as well as the different latest computational tools for data analysis. In addition, we discuss the role of LAB as potential probiotics by reporting the prevalence of key genomic features in public genomes and by surveying the outcomes of LAB use in clinical trials involving human subjects. Finally, we highlight the need for further studies aimed at improving our knowledge of the link between LAB-fermented foods and the human gut from the perspective of health promotion.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2663-2668 ◽  
Author(s):  
Manilduth Ramnath ◽  
Safia Arous ◽  
Anne Gravesen ◽  
John W. Hastings ◽  
Yann Héchard

Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, , in Listeria monocytogenes. To assess the involvement of this protein complex in class IIa bacteriocin activity, the mptACD operon, encoding , was heterologously expressed in an insensitive species, namely Lactococcus lactis, using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant Lc. lactis became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against Lc. lactis cultures expressing mptACD. Furthermore, the role of the three genes of the mptACD operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental mptACD plasmid by divergent PCR. The results showed that expression of mptC alone is sufficient to confer sensitivity to class IIa bacteriocins in Lc. lactis.


2012 ◽  
Vol 75 (8) ◽  
pp. 1429-1436 ◽  
Author(s):  
JEAN BAPTISTE NDAHETUYE ◽  
OK KYUNG KOO ◽  
CORLISS A. O'BRYAN ◽  
STEVEN C. RICKE ◽  
PHILIP G. CRANDALL

The study was conducted to evaluate the attachment of three lactic acid bacteria (LAB) strains and their combination in a cocktail, to stainless steel coupons from a deli slicer, and their ability to inhibit the attachment of Listeria monocytogenes. In a previous study, three LAB strains, Pediococcus acidilactici, Lactobacillus amylovorus, and Lactobacillus animalis, were isolated from ready-to-eat meat and exhibited antilisterial effect. In the study reported here, hydrophobicity tests were determined according to the method of microbial adhesion to solvent. The attachment of the cells was evaluated on stainless steel coupons from deli slicers. Extracellular carbohydrates were determined with a colorimetric method. Based on these tests, L. animalis exhibited the greatest hydrophobicity (26.3%), and its adherence increased sharply from 24 to 72 h, whereas L. amylovorus yielded the lowest hydrophobicity (3.86%) and was weakly adherent. Although P. acidilactici had moderate hydrophobicity (10.1%), it adhered strongly. The attached LAB strains produced significantly (P &lt; 0.05) higher total carbohydrates than their planktonic counterparts did, which is an important characteristic for attachment. Three conditions were simulated to evaluate the ability of the LAB cocktail (108 CFU/ml) to competitively exclude L. monocytogenes (103 CFU/ml) on the surface of the coupons. The coupons were pretreated with the LAB cocktail for 24 h prior to the addition of L. monocytogenes, simultaneously treated with the LAB cocktail and L. monocytogenes, or pretreated with L. monocytogenes 24 h prior to the addition of the LAB cocktail. The LAB cocktail was able to reduce the attachment L. monocytogenes significantly (P &lt; 0.05). The LAB cocktail indicated potential attachment on stainless steel and bacteriostatic activity toward L. monocytogenes attached on stainless steel, which indicates a possible role for LAB as a biosanitizer in the food industry.


2020 ◽  
Vol 65 (No. 1) ◽  
pp. 23-30 ◽  
Author(s):  
Heping Zhao ◽  
Feike Zhang ◽  
Jun Chai ◽  
Jianping Wang

The present study aimed to investigate the effect of probiotic lactic acid bacteria (LAB) addition on Listeria monocytogenes translocation and its toxin listeriolysin O (LLO), proinflammatory factors, immune organ indexes and serum immunoglobulins in farmed rabbits. Five treatments included negative control (NC), positive control (PC) with L. monocytogenes infection and supplemental LAB at 3.0 × 10<sup>6 </sup>(low-LAB, L-LAB), 3.0 × 10<sup>8</sup> (medium-LAB, M-LAB) and 3.0 × 10<sup>10 </sup>(high-LAB, H-LAB) CFU/kg of diet, respectively. The LAB was a mixture of equal amounts of Lactobacillus acidophilus (ACCC11073), Lactobacillus plantarum (CICC21863) and Enterococcus faecium (CICC20430). A total of 180 weaned rabbits (negative for L. monocytogenes) were randomly assigned to 5 groups with 6 replicates of 6 rabbits each in response to the 5 treatments. L. monocytogenes infection occurred on the first day of feeding trial and dietary LAB supplementation lasted for 14 days. The results showed that on days 7 and 14 post administration, L. monocytogenes in caecum, liver, spleen and lymph nodes was reduced in M-LAB and H-LAB compared to PC (P &lt; 0.05), and linear and quadratic reducing trends were found in liver on day 7 (P ≤ 0.002). On day 14, mucosa LLO mRNA expression and serum TNFα, IL1β and IFNγ were reduced in the three LAB treatments (P &lt; 0.05), and linear and quadratic trends were found on TNFα and IL1β (P ≤ 0.025); indexes of thymus and spleen, serum IgA and IgG were increased in the LAB treatments (P &lt; 0.05). It is concluded that LAB can be used to alleviate L. monocytogenes infection and to improve the immune function of farmed animals.


2013 ◽  
Vol 62 (11) ◽  
pp. 1657-1664 ◽  
Author(s):  
Chih-Yuan Chen ◽  
Hau-Yang Tsen ◽  
Chun-Li Lin ◽  
Chien-Ku Lin ◽  
Li-Tsen Chuang ◽  
...  

Heat-killed lactic acid bacteria (LAB) has advantages over live LAB in that it has a long shelf‐life and is therefore easy to store and transport. From four LAB strains selected by immunomodulatory activity and adherent properties, we prepared the heat-killed multispecies combination of LAB (MLAB) and the cell walls from MLAB under two conditions (100 °C for 30 min and 121 °C for 15 min). Different effects on the adherent properties of these four LAB strains were observed, depending on the heating conditions. With mouse macrophage cells, the two heat-killed MLABs (HMLABs) showed significantly higher induction activities on the production of interleukin 12 (IL-12) than their individual strains did. Heat-killed MLABs and cell‐wall preparations were able to reduce the Salmonella invasion of Caco-2 and mouse macrophage cells. Feeding mice with HMLAB could inhibit the Salmonella invasion of mice significantly. For these mice, the expression level of pro-inflammatory cytokines, such as TNF-α and IL-6, in mouse serum was reduced while that of the anti-inflammatory cytokine, i.e. IL-10, was enhanced. The HMLABs developed in this study showed higher protective effect against Salmonella invasion either of Caco-2 cells or of mice, relative to the heat-killed lactobacilli, which consisted of Lactobacillus acidophilus strains selected at random. In conclusion, the HMLABs were potentially useful for the protection of mice against Salmonella infection and the induced inflammation.


2006 ◽  
Vol 73 (4) ◽  
pp. 1136-1145 ◽  
Author(s):  
Elina Vihavainen ◽  
Hanna-Saara Lundstr�m ◽  
Tuija Susiluoto ◽  
Joanna Koort ◽  
Lars Paulin ◽  
...  

ABSTRACT Some psychrotrophic lactic acid bacteria (LAB) are specific meat spoilage organisms in modified-atmosphere-packaged (MAP), cold-stored meat products. To determine if incoming broilers or the production plant environment is a source of spoilage LAB, a total of 86, 122, and 447 LAB isolates from broiler carcasses, production plant air, and MAP broiler products, respectively, were characterized using a library of HindIII restriction fragment length polymorphism (RFLP) patterns of the 16 and 23S rRNA genes as operational taxonomic units in numerical analyses. Six hundred thirteen LAB isolates from the total of 655 clustered in 29 groups considered to be species specific. Sixty-four percent of product isolates clustered either with Carnobacterium divergens or with Carnobacterium maltaromaticum type strains. The third major product-associated cluster (17% of isolates) was formed by unknown LAB. Representative strains from these three clusters were analyzed for the phylogeny of their 16S rRNA genes. This analysis verified that the two largest RFLP clusters consisted of carnobacteria and showed that the unknown LAB group consisted of Lactococcus spp. No product-associated LAB were detected in broiler carcasses sampled at the beginning of slaughter, whereas carnobacteria and lactococci, along with some other specific meat spoilage LAB, were recovered from processing plant air at many sites. This study reveals that incoming broiler chickens are not major sources of psychrotrophic spoilage LAB, whereas the detection of these organisms from the air of the processing environment highlights the role of processing facilities as sources of LAB contamination.


2014 ◽  
Vol 05 (04) ◽  
pp. 435-442 ◽  
Author(s):  
Yantyati Widyastuti ◽  
Rohmatussolihat   ◽  
Andi Febrisiantosa

Sign in / Sign up

Export Citation Format

Share Document