scholarly journals Antiproliferative and apoptosis-inducing effects of maslinic and oleanolic acids, two pentacyclic triterpenes from olives, on HT-29 colon cancer cells

2008 ◽  
Vol 100 (1) ◽  
pp. 36-43 ◽  
Author(s):  
M. Emília Juan ◽  
Joana M. Planas ◽  
Valentina Ruiz-Gutierrez ◽  
Hannelore Daniel ◽  
Uwe Wenzel

We have previously reported the anticarcinogenic effects of an olive fruit extract composed of pentacyclic triterpenes, the main components of which are maslinic acid (73·25 %) and oleanolic acid (25·75 %). Here we examined the effects of the individual components on proliferation, necrosis and apoptosis rates by fluorescence-based techniques in human HT-29 colon cancer cells. Oleanolic acid showed moderate antiproliferative activity, with an ec50 of 160·6 (se 10·6) μmol/l, and moderate cytotoxicity at high concentrations ( ≥ 250 μmol/l). On the other hand, maslinic acid inhibited cell growth with an ec50 of 101·2 (se 7·8) μmol/l, without necrotic effects. Oleanolic acid, which lacks a hydroxyl group at the carbon 2 position, failed to activate caspase-3 as a prime apoptosis protease. In contrast, maslinic acid increased caspase-3-like activity at 10, 25 and 50 μmol/l by 3-, 3·5- and 5-fold over control cells, respectively. The detection of ROS in the mitochondria, which serve as pro-apoptotic signal, evidenced the different bioactivity of the two triterpenes. Confocal microscopy analysis revealed that maslinic acid generated superoxide anions while oleanolic acid-treated cells did not differ from the control. Completion of apoptosis by maslinic acid was confirmed microscopically by the increase in plasma membrane permeability, and detection of DNA fragmentation. In conclusion, the anticancer activity observed for olive fruit extracts seems to originate from maslinic acid but not from oleanolic acid. Maslinic acid therefore is a promising new compound for the chemoprevention of colon cancers.

2006 ◽  
Vol 136 (10) ◽  
pp. 2553-2557 ◽  
Author(s):  
M. Emília Juan ◽  
Uwe Wenzel ◽  
Valentina Ruiz-Gutierrez ◽  
Hannelore Daniel ◽  
Joana M. Planas

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
JiaNan Li ◽  
QiuHong Wang ◽  
ZhiBin Wang ◽  
Na Cui ◽  
BingYou Yang ◽  
...  

Abstract Tetrandrine (Tet) bisbenzylisoquinoline alkaloids isolated from Stephania tetrandra and other related species of Menispermaceae. It has been demonstrated to have positive therapeutic effects on cardiovascular disease, hypertension, silicosis, autoimmune diseases. In recent years, some reports have shown that Tet has anticancer activity in human cancers. To explore the pharmacological activity and mechanism of Tet on colon cancer and its unique advantages as a natural product. In the present study, analyses of the cell cycle, apoptosis, targets prediction, molecular docking, and alterations in protein levels were performed to elucidate how Tet functions in colon cancer. We found that Tet robustly induced arrest at the G1 phase in colon cancer cell line HT-29. It induced HT-29 cell apoptosis in a dose-dependent manner. Similarly, analysis of protein expression levels in HT-29 cells showed down-regulation of Bcl-2, pro-caspase 3, pro-caspase 8, PARP, cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK 4), and up-regulation of Bax, active caspase 3, and active caspase 8. These results indicate that Tet induces apoptosis of colon cancer cells through the mitochondrial pathway and caspase family pathway. Molecular docking showed interaction effects and binding energy. Comparing with the CDK4 inhibitors ribociclib and palbociclib, the docking energy is similar to the docked amino acid residues. Therefore, we conclude that Tet and the CCND1/CDK4 compound could form hydrogen bonds and a stable compound structure, which can inhibit colon cancer cells proliferation by regulating CCND1/CDK4 compound and its downstream proteins phosphorylated Rb (p-Rb). In summary, Tet may be a potential drug for colon cancer therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hyun Joo Jang ◽  
Eun Mi Hong ◽  
Juah Jang ◽  
Jung Eun Choi ◽  
Se Woo Park ◽  
...  

Aims. We here investigated whether the combination of simvastatin and irinotecan could induce the synergistic effect on colon cancer cells with or without resistance to irinotecan.Methods. We investigated cell proliferation assay and assessed cell death detection ELISA and caspase-3 activity assay of various concentrations of simvastatin and irinotecan to evaluate the efficacy of drug combination on colon cancer cells with or without irinotecan resistance.Results. The IC50values of simvastatin alone and irinotecan alone were115.4±0.14 μM (r=0.98) and62.5±0.18 μM (r=0.98) in HT-29 cells without resistance to irinotecan. The IC50values of these two drugs were221.9±0.22 μM (r=0.98) and195.9±0.16 μM (r=0.99), respectively, in HT-29 cell with resistance to irinotecan. The results of combinations of the various concentrations of two drugs showed that combined treatment with irinotecan and simvastatin more efficiently suppressed cell proliferation of HT-29 cells even with resistance to irinotecan as well as without resistance. Furthermore, the combination of simvastatin and irinotecan at2:1molar ratio showed the best synergistic interaction.Conclusion. Simvastatin could act synergistically with irinotecan to overcome irinotecan resistance of colon cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
Yeping Ruan

Abstract Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.


Author(s):  
Milena Villarini ◽  
Mattia Acito ◽  
Raffaella di Vito ◽  
Samuele Vannini ◽  
Luca Dominici ◽  
...  

(1) Background: Cynara cardunculus L. subsp. scolymus (L.) Hegi, popularly known as artichoke, is an herbaceous plant belonging to the Asteraceae family. Artichoke leaf extracts (ALEs) have been widely used in traditional medicine because of their hepatoprotective, cholagogic, hypoglycaemic, hypolipemic and antibacterial properties. ALEs are also recognized for their antioxidative and anti-inflammatory activities. In this study, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as effect on cell growth of ALEs on human colon cancer HT-29 and RKO cells. HT-29 and RKO cells exhibit a different p53 status: RKO cells express the wild-type protein, whereas HT-29 cells express a p53-R273H contact mutant. (2) Methods: Four different ALEs were obtained by sequential extraction of dried artichoke leaves; ALEs were characterized for their content in chlorogenic acid, cynaropicrin, and caffeoylquinic acids. HT-29 and RKO cells were used for in vitro testing (i.e., cytotoxicity and genotoxicity assessment, cell cycle analysis, apoptosis induction). (3) Results: Two out of the four tested ALEs showed marked effects on cell vitality toward HT-29 and RKO tumour cells. The effect was accompanied by a genotoxic activity exerted at a non-cytotoxic concentrations, by a significant perturbation of cell cycle (i.e., with increase of cells in the sub-G1 phase), and by the induction of apoptosis. (4) Conclusions: ALEs rich in cynaropicrin, caffeoylquinic acids, and chlorogenic acid showed to be capable of affecting HT-29 and RKO colon cancer cells by inducing favourable biological effects: cell cycle perturbation, activation of mitochondrial dependent pathway of apoptosis, and the induction of genotoxic effects probably mediated by the induction of apoptosis. Taken together, these results weigh in favour of a potential cancer chemotherapeutic activity of ALEs.


2016 ◽  
Vol 65 (31) ◽  
pp. 6477-6487 ◽  
Author(s):  
María-Carmen López de las Hazas ◽  
Juana I. Mosele ◽  
Alba Macià ◽  
Iziar A. Ludwig ◽  
María-José Motilva

2010 ◽  
Vol 24 (6) ◽  
pp. 1546-1553 ◽  
Author(s):  
Hiroe Go ◽  
Hye-Jung Hwang ◽  
Taek-Jeong Nam

Sign in / Sign up

Export Citation Format

Share Document