scholarly journals Vitamin E supplementation may transiently increase tuberculosis risk in males who smoke heavily and have high dietary vitamin C intake – comments by Hernández-Garduño

2008 ◽  
Vol 101 (1) ◽  
pp. 145-145 ◽  
Author(s):  
Eduardo Hernández-Garduño

Hemilä & Kaprio(1) found a 72 % increase in the risk of tuberculosis (TB) in males taking vitamin E supplements and having high dietary vitamin C intake; the effect was restricted to heavy smokers as part of the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study.

2008 ◽  
Vol 100 (4) ◽  
pp. 896-902 ◽  
Author(s):  
Harri Hemilä ◽  
Jaakko Kaprio

Vitamin E and β-carotene affect the immune function and might influence the predisposition of man to infections. To examine whether vitamin E or β-carotene supplementation affects tuberculosis risk, we analysed data of the Alpha-Tocopherol Beta-Carotene Cancer Prevention (ATBC) Study, a randomised controlled trial which examined the effects of vitamin E (50 mg/d) and β-carotene (20 mg/d) on lung cancer. The trial was conducted in the general community in Finland in 1985–93; the intervention lasted for 6·1 years (median). The ATBC Study cohort consists of 29 023 males aged 50–69 years, smoking at baseline, with no tuberculosis diagnosis prior to randomisation. Vitamin E supplementation had no overall effect on the incidence of tuberculosis (risk ratio (RR) = 1·18; 95 % CI 0·87, 1·59) nor had β-carotene (RR = 1·07; 95 % CI 0·80, 1·45). Nevertheless, dietary vitamin C intake significantly modified the vitamin E effect. Among participants who obtained 90 mg/d or more of vitamin C in foods (n13 502), vitamin E supplementation increased tuberculosis risk by 72  (95 % CI 4, 185)%. This effect was restricted to participants who smoked heavily. Finally, in participants not supplemented with vitamin E, dietary vitamin C had a negative association with tuberculosis risk so that the adjusted risk was 60 (95 % CI 16, 81) % lower in the highest intake quartile compared with the lowest. Our finding that vitamin E seemed to transiently increase the risk of tuberculosis in those who smoked heavily and had high dietary vitamin C intake should increase caution towards vitamin E supplementation for improving the immune system.


2016 ◽  
Vol 116 (9) ◽  
pp. 1530-1536 ◽  
Author(s):  
Harri Hemilä

AbstractAnalyses in nutritional epidemiology usually assume a uniform effect of a nutrient. Previously, four subgroups of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study of Finnish male smokers aged 50–69 years were identified in which vitamin E supplementation either significantly increased or decreased the risk of pneumonia. The purpose of this present study was to quantify the level of true heterogeneity in the effect of vitamin E on pneumonia incidence using the I2 statistic. The I2 value estimates the percentage of total variation across studies that is explained by true differences in the treatment effect rather than by chance, with a range from 0 to 100 %. The I2 statistic for the effect of vitamin E supplementation on pneumonia risk for five subgroups of the ATBC population was 89 % (95 % CI 78, 95 %), indicating that essentially all heterogeneity was true variation in vitamin E effect instead of chance variation. The I2 statistic for heterogeneity in vitamin E effects on pneumonia risk was 92 % (95 % CI 80, 97 %) for three other ATBC subgroups defined by smoking level and leisure-time exercise level. Vitamin E decreased pneumonia risk by 69 % among participants who had the least exposure to smoking and exercised during leisure time (7·6 % of the ATBC participants), and vitamin E increased pneumonia risk by 68 % among those who had the highest exposure to smoking and did not exercise (22 % of the ATBC participants). These findings refute there being a uniform effect of vitamin E supplementation on the risk of pneumonia.


2008 ◽  
Vol 101 (1) ◽  
pp. 146-147 ◽  
Author(s):  
Harri Hemilä ◽  
Jaakko Kaprio

Randomisation of participants in two study groups leads to groups that have baseline differences accountable by the play of chance. In small trials, the random variation between two study groups can be large, but in large studies the variation is typically small.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1810-1810
Author(s):  
Jiaqi Huang ◽  
Stephanie Weinstein ◽  
Wendy Mack ◽  
Howard Hodis ◽  
Demetrius Albanes

Abstract Objectives Vitamin E is an essential micronutrient and critical human antioxidant that has been tested for cancer and cardiovascular preventative effects for decades with conflicting results. For example, prostate cancer incidence was reduced by a low-dose vitamin E supplement in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, but the findings were not replicated by high-dose vitamin E trials such as the Selenium and Vitamin E Cancer Prevention Trial (SELECT). The present investigation examined the serum metabolomic responses to low- and high-dose vitamin E supplementation in order to gain biological insight into the divergent trial outcomes. Methods We examined baseline and on-study serum samples for 154 men randomly assigned to receive 400 IU vitamin E (as alpha-tocopheryl acetate; ATA) or placebo daily in the Vitamin E Atherosclerosis Prevention Study (VEAPS), and 100 men administered 50 IU ATA or placebo daily in the ATBC Study. Over 970 known metabolites were identified using an ultrahigh-performance LC-MS/MS platform. Linear regression models estimated the change in serum metabolites of men supplemented with vitamin E to those assigned to placebo in VEAPS compared with ATBC. Results Serum alpha-carboxyethyl hydrochroman (CEHC) sulfate, alpha-tocopherol, and beta-/gamma-tocopherol were significantly altered by supplementation with ATA in both the VEAPS and ATBC trials (all P-values ≤ 5.1 × 10−5, the Bonferroni multiple-comparisons corrected statistical threshold). Serum C22 lactone sulfate was also significantly decreased in response to the high-dose vitamin E supplement in VEAPS (β = −0.70, P-value = 8.1 × 10−6), but not altered in the low-dose ATBC trial (β = −0.17, P-value = 0.4). Additionally, changes in several androgenic steroid metabolites were strongly related to the vitamin E supplement-associated change in C22 lactone sulfate only in the high-dose VEAPS trial. Conclusions We found evidence of a dose-dependent vitamin E supplementation effect on a novel C22 lactone sulfate compound as well as several androgenic steroids that may have relevance to previous controlled trial findings for prostate cancer. Funding Sources This research was supported by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, U.S. Public Health Service, Department of Health and Human Services.


2008 ◽  
Vol 17 (7) ◽  
pp. 1832-1834 ◽  
Author(s):  
Joshua B. Max ◽  
Paul J. Limburg ◽  
Adeboye Ogunseitan ◽  
Rachael Z. Stolzenberg-Solomon ◽  
Robert A. Vierkant ◽  
...  

2011 ◽  
Vol 4 (11) ◽  
pp. 1912-1919 ◽  
Author(s):  
Shannon M. Lynch ◽  
Stephanie J. Weinstein ◽  
Jarmo Virtamo ◽  
Qing Lan ◽  
Chin-San Liu ◽  
...  

2013 ◽  
Vol 98 (2) ◽  
pp. 488-493 ◽  
Author(s):  
Alison M Mondul ◽  
Joshua N Sampson ◽  
Steven C Moore ◽  
Stephanie J Weinstein ◽  
Anne M Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document