scholarly journals Soya protein does not affect glycaemic control in adults with type 2 diabetes

2009 ◽  
Vol 103 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Colleen P. Gobert ◽  
Elizabeth A. Pipe ◽  
Sarah E. Capes ◽  
Gerarda A. Darlington ◽  
Johanna W. Lampe ◽  
...  

Evidence from observational, animal and human studies supports a role for soya protein and its isoflavones in the improvement of glycaemic control in type 2 diabetes. The objective of the present study was to determine the effect of isoflavone-rich soya protein on markers of glycaemic control in adults with type 2 diabetes. Using a randomised, crossover, double-blind, placebo-controlled design, adults with diet-controlled type 2 diabetes (n 29) consumed soya protein isolate (SPI) and milk protein isolate (MPI) for 57 d each separated by a 4-week washout. Blood was collected on days 1 and 57 of each treatment period for analysis of fasting HbA1C, and fasting and postprandial glucose, insulin and calculated indices of insulin sensitivity and resistance. Urine samples of 24 h were collected at the end of each treatment period for analysis of isoflavones. Urinary isoflavone excretion was significantly greater following consumption of SPI compared with MPI, and 20·7 % of the subjects (n 6) were classified as equol excretors. SPI consumption did not significantly affect fasting or postprandial glucose or insulin, fasting HbA1C, or indices of insulin sensitivity and resistance. These data do not support a role for soya protein in the improvement of glycaemic control in adults with diet-controlled type 2 diabetes and contribute to a limited literature of human studies on the effects of soya protein on the management of type 2 diabetes.

2002 ◽  
Vol 87 (1) ◽  
pp. 198-203 ◽  
Author(s):  
Ahmed I. Albarrak ◽  
Stephen D. Luzio ◽  
Ludovic J. Chassin ◽  
Rebecca A. Playle ◽  
David R. Owens ◽  
...  

We examined the ability of indices of insulin sensitivity and pancreatic β-cell responsiveness to explain interindividual variability of clinical measures of glucose control in newly presenting type 2 diabetes. Subjects with newly presenting type 2 diabetes (n = 65; 53 males and 12 females; age, 54 ± 1 yr; body mass index, 30.5 ± 0.7 kg/m2; mean ± se) underwent an insulin-modified iv glucose tolerance test to determine minimal model-derived insulin sensitivity (SI), glucose effectiveness, first-phase insulin secretion, and disposition index. Subjects also underwent a standard meal tolerance test (MTT) to measure fasting/basal (M0) and postprandial (MI) pancreatic β-cell responsiveness. Stepwise linear regression used these indices to explain interindividual variability of fasting and postprandial plasma glucose and insulin concentrations and glycated hemoglobin (HbA1C). All measures of pancreatic β-cell responsiveness (M0, MI, and first-phase insulin secretion) were negatively correlated with fasting plasma glucose (P < 0.01) and positively correlated with fasting plasma insulin (FPI) and insulin responses to MTT (P < 0.05). SI demonstrated negative correlation with FPI (P < 0.001) but failed to correlate with any glucose variable. MI followed by disposition index (composite index of insulin sensitivity and pancreatic β-cell responsiveness) were most informative in explaining interindividual variability. It was possible to explain 70–80% interindividual variability of fasting plasma glucose, FPI, HbA1C, and insulin responses to MTT, and only 25–40% interindividual variability of postprandial glucose. In conclusion, postprandial insulin deficiency is the most powerful explanatory factor of deteriorating glucose control in newly presenting type 2 diabetes. Indices of insulin sensitivity and pancreatic β-cell responsiveness explain fasting glucose and HbA1C well but fail to explain postprandial glucose.


Diabetologia ◽  
2016 ◽  
Vol 60 (3) ◽  
pp. 490-498 ◽  
Author(s):  
Bernard M. F. M. Duvivier ◽  
Nicolaas C. Schaper ◽  
Matthijs K. C. Hesselink ◽  
Linh van Kan ◽  
Nathalie Stienen ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carlijn M. E. Remie ◽  
Michiel P. B. Moonen ◽  
Kay H. M. Roumans ◽  
Emmani B. M. Nascimento ◽  
Anne Gemmink ◽  
...  

AbstractMild cold acclimation for 10 days has been previously shown to markedly improve insulin sensitivity in patients with type 2 diabetes. Here we show in a single-arm intervention study (Trialregister.nl ID: NL4469/NTR5711) in nine patients with type 2 diabetes that ten days of mild cold acclimation (16–17 °C) in which observable, overt shivering was prevented, does not result in improved insulin sensitivity, postprandial glucose and lipid metabolism or intrahepatic lipid content and only results in mild effects on overnight fasted fat oxidation, postprandial energy expenditure and aortic augmentation index. The lack of marked metabolic effects in this study is associated with a lack of self-reported shivering and a lack of upregulation of gene expression of muscle activation or muscle contraction pathways in skeletal muscle and suggests that some form of muscle contraction is needed for beneficial effects of mild cold acclimation.


2014 ◽  
Vol 3 (2) ◽  
pp. 75-84 ◽  
Author(s):  
C L Bodinham ◽  
L Smith ◽  
E L Thomas ◽  
J D Bell ◽  
J R Swann ◽  
...  

Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.


Diabetologia ◽  
2020 ◽  
Vol 63 (4) ◽  
pp. 744-756 ◽  
Author(s):  
Robert W. Koivula ◽  
◽  
Naeimeh Atabaki-Pasdar ◽  
Giuseppe N. Giordano ◽  
Tom White ◽  
...  

Abstract Aims/hypothesis It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.


2014 ◽  
Vol 170 (6) ◽  
pp. 799-807 ◽  
Author(s):  
Behiye Özcan ◽  
Sebastian J C M M Neggers ◽  
Anne Reifel Miller ◽  
Hsiu-Chiung Yang ◽  
Virginia Lucaites ◽  
...  

ObjectiveThe objective of this study was to assess the effects of a continuous overnight infusion of des-acyl ghrelin (DAG) on acylated ghrelin (AG) levels and glucose and insulin responses to a standard breakfast meal (SBM) in eight overweight patients with type 2 diabetes. Furthermore, in the same patients and two additional subjects, the effects of DAG infusion on AG concentrations and insulin sensitivity during a hyperinsulinemic–euglycemic clamp (HEC) were assessed.Research design and methodsA double-blind, placebo-controlled cross-over study design was implemented, using overnight continuous infusions of 3 and 10 μg DAG/kg per h and placebo to study the effects on a SBM. During a HEC, we studied the insulin sensitivity.ResultsWe observed that, compared with placebo, overnight DAG administration significantly decreased postprandial glucose levels, both during continuous glucose monitoring and at peak serum glucose levels. The degree of improvement in glycemia was correlated with baseline plasma AG concentrations. Concurrently, DAG infusion significantly decreased fasting and postprandial AG levels. During the HEC, 2.5 h of DAG infusion markedly decreased AG levels, and the M-index, a measure of insulin sensitivity, was significantly improved in the six subjects in whom we were able to attain steady-state euglycemia. DAG administration was not accompanied by many side effects when compared with placebo.ConclusionsDAG administration improves glycemic control in obese subjects with type 2 diabetes through the suppression of AG levels. DAG is a good candidate for the development of compounds in the treatment of metabolic disorders or other conditions with a disturbed AG:DAG ratio, such as type 2 diabetes mellitus or Prader–Willi syndrome.


Sign in / Sign up

Export Citation Format

Share Document