scholarly journals Potential of novel dextran oligosaccharides as prebiotics for obesity management throughin vitroexperimentation

2014 ◽  
Vol 112 (8) ◽  
pp. 1303-1314 ◽  
Author(s):  
Shahrul R. Sarbini ◽  
Sofia Kolida ◽  
Eddie R. Deaville ◽  
Glenn R. Gibson ◽  
Robert A. Rastall

The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, thein vitroresponse of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescentin situhybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts ofBacteroides–Prevotellaand decreasing those ofFaecalibacterium prausnitziiandRuminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.

2012 ◽  
Vol 109 (11) ◽  
pp. 1980-1989 ◽  
Author(s):  
Shahrul R. Sarbini ◽  
Sofia Kolida ◽  
Glenn R. Gibson ◽  
Robert A. Rastall

The fermentation selectivity of a commercial source of α-gluco-oligosaccharides (BioEcolians; Solabia) was investigatedin vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescentin situhybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. α-Gluco-oligosaccharides significantly increased theBifidobacteriumsp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in theBacteroides–Prevotellagroup and a decrease inFaecalibacterium prausnitziion both α-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of α-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.


2010 ◽  
Vol 93 (10) ◽  
pp. 4735-4743 ◽  
Author(s):  
W.L. Williams ◽  
L.O. Tedeschi ◽  
P.J. Kononoff ◽  
T.R. Callaway ◽  
S.E. Dowd ◽  
...  

2005 ◽  
Vol 71 (12) ◽  
pp. 8383-8389 ◽  
Author(s):  
K. Manderson ◽  
M. Pinart ◽  
K. M. Tuohy ◽  
W. E. Grace ◽  
A. T. Hotchkiss ◽  
...  

ABSTRACT Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.


2005 ◽  
Vol 81 (1) ◽  
pp. 31-38 ◽  
Author(s):  
M. L. Tejido ◽  
M. J. Ranilla ◽  
R. García-Martínez ◽  
M. D. Carro

AbstractThe effects of two concentrations of disodium malate on thein vitrofermentation of three substrates differing in their forage: concentrate ratio (0·8: 0·2, 0·5: 0·5 and 0·2: 0·8; g/g dry matter; low-, medium- and high-concentrate substrates, respectively) by rumen micro-organisms were studied using batch cultures. Rumen contents were collected from four Merino sheep offered lucerne hay ad libitum and supplemented daily with 400 g concentrate. Disodium malate was added to the incubation bottles to achieve final concentrations of 0, 4 and 8 mmol/l malate and15N was used as a microbial marker. Gas production was measured at regular intervals from 0 to 120 h of incubation to study fermentation kinetics. When gas production values were corrected for gas released from added malate, no effects (P> 0·05) of malate were detected for any of the estimated gas production parameters. In 17-h incubations, the final pH and total volatile fatty acid (VFA) production were increased (P< 0·001) by the addition of malate, but no changes (P> 0·05) were detected in the final amounts of ammonia-N and lactate. When net VFA productions were corrected for the amount of VFA produced from malate fermentation itself, adding malate did not affect (P> 0·05) the production of acetate, propionate and total VFA. Malate reduced methane (CH4) production by proportionately 0·058, 0·013 and 0·054 for the low-, medium- and high-concentrate substrates, respectively. Adding malate to batch cultures increased (P< 0·01) rumen microbial growth (mean values of 16·6, 18·3 and 18·4 mg of microbial N for malate at 0, 4 and 8 mmol/l, respectively), but did not affect (P> 0·05) its efficiency of growth (55·5, 56·7 and 54·3 mg of microbial N per g of organic matter apparently fermented for malate at 0, 4 and 8 mmol/l, respectively). There were no interactions (P> 0·05) malate × substrate for any of the measured variables, and no differences (P> 0·05) in pH, CH4production and microbial growth were found between malate at 4 and 8 mmol/l. The results indicate that malate had a beneficial effect on in vitro rumen fermentation of substrates by increasing VFA production and microbial growth, and that only subtle differences in the effects of malate were observed between substrates. Most of the observed effects, however, seem to be due to fermentation of malate itself.


2020 ◽  
Vol 8 (11) ◽  
pp. 1774
Author(s):  
Hugo R. Jimenez ◽  
Joan E. Edwards ◽  
Ruth Sanderson ◽  
Alison H. Kingston-Smith ◽  
Neil R. McEwan ◽  
...  

Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host’s ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Junkui Chen ◽  
Xionge Pi ◽  
Wei Liu ◽  
Qunfang Ding ◽  
Xin Wang ◽  
...  

Abstract Background Gut microbiota is critical in maintaining human health, of which diversity and abundance are subject to significantly reduce in seniors. Gut microbiota is reported to be stable across the long adulthood in general, but lack of careful examination, especially for the midlife people. Results To characterize the gut microbiota in midlife, we investigated the faecal microbiota between two groups of healthy people, young, 20–39 years old, n = 15; and midlife, 40–60 years old, n = 15. Metabolic responses of the microbiota were studied through in vitro batch fermentation model. Although no difference was observed in the diversity indices between the two age groups, a wide range taxonomic changes were found in the faecal microbiota. Furthermore, substantial Bifidobacterium reduction was also found in both faecal and fermented samples. The faecal SCFAs are similar in both groups, as well as starch fermentation broth. However, after inulin fermentation, the acetate concentration and inulin degradation rate decreased while the gas production increased in midlife group, suggesting a deficiency of saccharolytic potential in midlife, especially for non-digestible carbohydrate. Conclusions Our data demonstrate that gut microbiota begins to change as early as in midlife. The reduction in Bifidobacterium dominates the change of the microbiota composition in midlife resulting in attenuated saccharolytic capacity of inulin, possibly leading to insufficient acetate production which might be associated with healthy problems in this transition period from young to elderly.


2020 ◽  
Vol 90 ◽  
pp. 103020
Author(s):  
Martin Bachmann ◽  
Maren Glatter ◽  
Mandy Bochnia ◽  
Monika Wensch-Dorendorf ◽  
Jörg M. Greef ◽  
...  

2016 ◽  
Vol 116 (6) ◽  
pp. 1116-1124 ◽  
Author(s):  
E. Pérez-López ◽  
D. Cela ◽  
A. Costabile ◽  
I. Mateos-Aparicio ◽  
P. Rupérez

AbstractAt present, there is a huge interest in finding new prebiotics from agrofood industrial waste, such as the soyabean by-product Okara, rich in insoluble dietary fibre. A previous treatment of Okara with high hydrostatic pressure assisted by the food-grade enzymeUltraflo®L achieved a 58·2 % increment in its soluble dietary fibre (SDF) contents. Therefore, potential prebiotic effect of both treated and native Okara was assayed using 48 h, pH-controlled, anaerobic batch cultures inoculated with human faecal slurries, which simulate the human gut. Changes in faecal microbiota were evaluated using 16S rRNA-based fluorescencein situhybridisation, whereas release of SCFA and lactic acid was assessed by HPLC. Both Okara samples exhibited potential prebiotic effects but Okara treated to maximise its SDF content showed higher SCFA plus lactic acid, better growth promotion of beneficial bacteria, including bifidobacteria after 4 and 48 h and lactobacilli after 4 h of fermentation, and a greater inhibition of potentially harmful bacterial groups such as clostridia and Bacteroides. Differences found between fructo-oligosaccharides and Okara substrates could be attributed to the great complexity of Okara’s cell wall, which would need longer times to be fermented than other easily digested molecules, thus allowing an extended potential prebiotic effect. These results support anin vitropotential prebiotic effect of Okara.


2013 ◽  
Vol 152 (4) ◽  
pp. 686-696 ◽  
Author(s):  
H. J. YANG ◽  
H. ZHUANG ◽  
X. K. MENG ◽  
D. F. ZHANG ◽  
B. H. CAO

SUMMARYThe effects of melamine on gas production (GP) kinetics, methane (CH4) production and fermentation of diets differing in forage content (low-forage (LF) diet: 200 g/kg and high-forage (HF) diet: 800 g/kg) by rumen micro-organismsin vitrowere studied using batch cultures. Rumen contents were collected from three Simmental×Luxi crossbred beef cattle. Melamine was added to the incubation bottles to achieve final concentration of 0 (control), 2, 6, 18, 54, 162 and 484 mg/kg of each diet. Cumulative GP was continuously measured in an automated gas recording instrument during 72 h of incubation, while fermentation gas end-products were collected to determine molar proportions of carbon dioxide (CO2), CH4and hydrogen gas (H2) in manually operated batch cultures. Differences in GP kinetics and fermentation gases were observed in response to the nature of the diets incubated. Although melamine addition did not affect GP kinetics and fermentation gas pattern compared to the control, the increase of melamine addition stimulated the yield of CH4by decreasing CO2, especially during the fermentation of the HF diet. The concentrations of ammonia nitrogen (N), amino acid N and microbial N in culture fluids were greater in the fermentation of LF- than HF diets, and these concentrations were increased by the increase of melamine addition after 72-h fermentation. The concentrations of total volatile fatty acids (VFA) were greater in HF than LF diets. The addition of melamine decreased total VFA concentrations and this response was greater in HF than LF diet fermentations. Melamine addition did not affect molar proportions of acetate, butyrate, propionate and valerate compared with the control; however, branched-chain VFA production, which was lower in the HF than the LF diet, was increased by the melamine addition, especially in the HF diet fermentation. The ratio of non-glucogenic to glucogenic acids was lower in the HF than the LF diet, but it was not affected by melamine addition. In brief, the greater reduction in the rate and extent of rumen fermentation found for the HF diet in comparison with the LF diet suggested that rumen fermentation rate and extentin vitrodepended mainly on the nature of the incubated substrate, and that they could be further inhibited by the increase of melamine addition.


Sign in / Sign up

Export Citation Format

Share Document