scholarly journals Sodium pyrophosphate enhances iron bioavailability from bouillon cubes fortified with ferric pyrophosphate

2016 ◽  
Vol 116 (3) ◽  
pp. 496-503 ◽  
Author(s):  
Colin I. Cercamondi ◽  
Guus S. M. J. E. Duchateau ◽  
Rajwinder K. Harika ◽  
Robin van den Berg ◽  
Peter Murray ◽  
...  

AbstractFe fortification of centrally manufactured and frequently consumed condiments such as bouillon cubes could help prevent Fe deficiency in developing countries. However, Fe compounds that do not cause sensory changes in the fortified product, such as ferric pyrophosphate (FePP), exhibit low absorption in humans. Tetra sodium pyrophosphate (NaPP) can form soluble complexes with Fe, which could increase Fe bioavailability. Therefore, the aim of this study was to investigate Fe bioavailability from bouillon cubes fortified with either FePP only, FePP+NaPP, ferrous sulphate (FeSO4) only, or FeSO4+NaPP. We first conducted in vitro studies using a protocol of simulated digestion to assess the dialysable and ionic Fe, and the cellular ferritin response in a Caco-2 cell model. Second, Fe absorption from bouillon prepared from intrinsically labelled cubes (2·5 mg stable Fe isotopes/cube) was assessed in twenty-four Fe-deficient women, by measuring Fe incorporation into erythrocytes 2 weeks after consumption. Fe bioavailability in humans increased by 46 % (P<0·005) when comparing bouillons fortified with FePP only (4·4 %) and bouillons fortified with FePP+NaPP (6·4 %). Fe absorption from bouillons fortified with FeSO4 only and with FeSO4+NaPP was 33·8 and 27·8 %, respectively (NS). The outcome from the human study is in agreement with the dialysable Fe from the in vitro experiments. Our findings suggest that the addition of NaPP could be a promising strategy to increase Fe absorption from FePP-fortified bouillon cubes, and if confirmed by further research, for other fortified foods with complex food matrices as well.

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2776
Author(s):  
Magalie Sabatier ◽  
Andreas Rytz ◽  
Joeska Husny ◽  
Stéphane Dubascoux ◽  
Marine Nicolas ◽  
...  

A new iron–casein complex (ICC) has been developed for iron (Fe) fortification of dairy matrices. The objective was to assess the impact of ascorbic acid (AA) on its in vitro bioavailability in comparison with ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP). A simulated digestion coupled with the Caco-2 cell culture model was used in parallel with solubility and dissociation tests. Under diluted acidic conditions, the ICC was as soluble as FeSO4, but only part of the iron was found to dissociate from the caseins, indicating that the ICC was an iron chelate. The Caco-2 cell results in milk showed that the addition of AA (2:1 molar ratio) enhanced iron uptake from the ICCs and FeSO4 to a similar level (p = 0.582; p = 0.852) and to a significantly higher level than that from FePP (p < 0.01). This translated into a relative in vitro bioavailability to FeSO4 of 36% for FePP and 114 and 104% for the two ICCs. Similar results were obtained from water. Increasing the AA to iron molar ratio (4:1 molar ratio) had no additional effect on the ICCs and FePP. However, ICC absorption remained similar to that from FeSO4 (p = 0.666; p = 0.113), and was still significantly higher than that from FePP (p < 0.003). Therefore, even though iron from ICC does not fully dissociate under gastric digestion, iron uptake suggested that ICCs are absorbed to a similar amount as FeSO4 in the presence of AA and thus provide an excellent source of iron.


2019 ◽  
Vol 149 (5) ◽  
pp. 723-729 ◽  
Author(s):  
Ans Eilander ◽  
Olumakaiye M Funke ◽  
Diego Moretti ◽  
Michael B Zimmermann ◽  
Temilola O Owojuyigbe ◽  
...  

ABSTRACT Background It is challenging to find an iron compound that combines good bioavailability with minimal sensory changes when added to seasonings or condiments. Ferric pyrophosphate (FePP) is currently used to fortify bouillon cubes, but its bioavailability is generally low. Previously, the addition of a stabilizer, sodium pyrophosphate (NaPP), improved iron bioavailability from a bouillon drink. Objective We assessed whether there is a dose-response effect of added NaPP on iron bioavailability from local meals prepared with intrinsically labeled FePP-fortified bouillon cubes in young Nigerian women using iron stable isotope techniques. Methods In a double-blind, randomized, cross-over trial, women (n = 24; aged 18–40 y; mean BMI 20.5 kg/m2) consumed a Nigerian breakfast and lunch for 5 d prepared with bouillon cubes containing 2.5 mg 57Fe (as FePP) and 3 different molar ratios of NaPP: 57Fe (0:1, 3:1, and 6:1). Iron bioavailability was assessed by measuring 57Fe incorporation into erythrocytes 16 d after each 5 d NaPP: 57Fe feeding period. Data were analyzed using a linear regression model of log iron absorption on NaPP ratio, with body weight and baseline body iron stores as covariates and subject as a random intercept. Results Of the women included, 46% were anemic and 26% were iron deficient. Iron bioavailability was 10.8, 9.8, and 11.0% for the 0:1, 3:1, and 6:1 NaPP:57Fe treatments, respectively. There was no dose-response effect of an increasing NaPP:57Fe ratio (β ± SE: 0.003 ± 0.028, P = 0.45). Conclusions In this study, the addition of NaPP did not increase iron bioavailability from FePP-fortified bouillon cubes. However, iron bioavailability from the Nigerian meals prepared with FePP-fortified bouillon cubes was higher than expected. These results are encouraging for the potential of bouillon cubes as a fortification vehicle. Further studies are needed to assess the effect of FePP-fortified bouillon cubes on improving iron status in low-income populations. This trial was registered at clinicaltrials.gov as NCT02815449.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4561-4561 ◽  
Author(s):  
Germano Tarantino ◽  
Elisa Brilli ◽  
Ylenia Zambito ◽  
Giulio Giordano ◽  
Francesco Equitani

Abstract Introduction: Iron deficiency is one of the most widespread nutritional deficiencies. Globally two billion people are suffering from iron- deficiency anemia (Hermida et al., 2010). Oral therapy for iron deficiency is mainly based on immediate release formulations of ferrous iron. However, modified formulations have been marketed to reduce gastrointestinal side effects and to prevent iron instability in the gastrointestinal tract. Overcoming biological barriers, including the gastrointestinal epithelial barriers, is a great challenge for pharmaceutical research and thus there is a need for new absorption enhancers with more favorable profile. Sucrose esters are widely used in the food industry, and there are reports on their potential use in pharmaceutical formulations as excipients (Szuts A et al., 2008). In vitro methods using cell cultures have been proposed to assess iron bioavailability as an alternative to in vivo methods. Caco-2 cells have shown numerous morphological and biochemical characteristics of enterocytes and have been successfully used to study iron absorption (Garcia et al., 1996; Jovani et al., 2001). Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability of some components in Caco-2 monolayers. Recent data indicate that sucrose esters can enhance drug permeability through both the transcellular and paracellular routes (Kiss et al., 2014). Aim: The strong correlation between the published human absorption data and the iron uptake by Caco-2 cells makes them an ideal in vitro model to study iron bioavailability (Au and Reddy, 2000). For this, in the present study, we compared the bioavailability of innovative Oral Iron formulation based on Sucrosomial Iron¨ (Sideral¨) with three different Iron formulations (Figure 1). Materials and Methods: Sucrosomial Iron, preparation of ferric pyrophosphate convered by a phospholipids plus sucrose esters of fatty acids matrix; Lipofer¨, a water-dispersible micronised iron; Sunactive¨ ferric pyrophosphate, lecithin and emulsifiers. Results: The data showed that Sucrosomial Iron¨ (Sideral¨), is significantly more bioavaible than microencapsulated Ferric pyrophosphate ingredients, Lipofer¨ and Sunactive¨ and Ferrous Sulfate in Caco-2 cell model (Figure 1). Bibliography Au, A. P., Reddy, M. B. (2000). Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal. J Nutr 130:1329-1334. Garcia et al. (1996). The Caco-2 cell culture system can be used as a model to study food iron availability. J Nutr 126:251-258. Hermida et al., Preparation and characterization of iron-containing liposomes: their effect on soluble iron uptake by Caco-2 cells Journal of Liposome Research, 2010, 1-10, Jovani et al. (2001) Calcium, iron, and zinc uptake from digests of infant formulas by Caco-2 cells. J Agric Food Chem 49:3480-3485. Kiss et al., (2014) Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells J Pharm Sci. Oct;103(10):3107-19. Szuts A et al. (2008) Study of the effects of drugs on the structures of sucrose esters and the effects of solid-state interactions on drug release J Pharm Biomed Anal. 48: Figure 1. the graph shows the Ferritin levels of Caco-2 cells after iron formulations treatment. Sucrosomial Iron treated cells display significant increase of Ferritin synthesis compared to Lipofer and SunActive treated cells. Figure 1. the graph shows the Ferritin levels of Caco-2 cells after iron formulations treatment. Sucrosomial Iron treated cells display significant increase of Ferritin synthesis compared to Lipofer and SunActive treated cells. Disclosures Tarantino: Pharmanutra s.p.a.: Employment. Brilli:Pharmanutra s.p.a.: Employment.


2010 ◽  
Vol 80 (45) ◽  
pp. 307-313 ◽  
Author(s):  
Ann-Sofie Sandberg

The Caco-2 cell model is widely used to assess the bioaccessibility/availability of iron from foods and diets. Analysis of iron uptake in this human epithelial cell line is usually preceded by a two-step digestion to simulate the conditions in the stomach and small intestine. Moreover, culturing the cells on inserts permits the measurement of iron transport. The cellular iron uptake is determined by direct measurements using radioisotopes, or indirectly by measurement of ferritin, the intracellular storage form of iron. There is a good correlation between Caco-2 cell uptake and human iron bioavailability for a number of dietary factors known to affect iron absorption. However, recent data suggest that in some cases there is no correlation. Possible reasons for such discrepancies, the benefits, and limitations of the Caco-2 cell model are discussed. In conclusion, in vitro experiments with Caco-2 cells are important tools for ranking foods with respect to bioavailability, for mechanistic studies of iron absorption, and for studies of dietary factors influencing absorption. The results need to be confirmed in humans.


2006 ◽  
Vol 54 (24) ◽  
pp. 9254-9261 ◽  
Author(s):  
Ying Hu ◽  
Zhiqiang Cheng ◽  
Larry I. Heller ◽  
Stuart B. Krasnoff ◽  
Raymond P. Glahn ◽  
...  

2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Bryan M Gannon ◽  
Raymond P Glahn ◽  
Saurabh Mehta

ABSTRACT Background Inadequate nutritional status contributes to substantial losses in human health and productivity globally. A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is being conducted in India. Objective We sought to determine the relative iron bioavailability from biofortified and conventional crops and crop combinations representative of a cyclical menu using crops targeted for inclusion in the feeding trial. Methods Crops were procured from India, cooked, freeze-dried, and analyzed with an established in vitro digestion/Caco-2 iron bioavailability assay using a fixed sample weight. Crop proportions representative of meals planned for the human study were determined and combined such that samples included either all biofortified or all control crops. Crops were analyzed as single crops (n = 4) or crop combinations (n = 7) by variety (biofortified or control) in triplicate. The primary outcome was iron uptake measured by Caco-2 ferritin production normalized to total Caco-2 protein (nanograms of ferritin/milligrams of cell protein) analyzed for effects of crop variety and crop proportion using generalized linear models. Results Biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96; P = 0.036). Addition of sweet potato or sweet potato + pulse improved iron uptake for all proportions tested in control varieties and select proportions for biofortified varieties (P ≤ 0.05). Two multiple crop combinations demonstrated modestly higher iron uptake from biofortified crops. Conclusions Optimizing total iron delivery should consider matrix effects, processing, and promoters/inhibitors of iron absorption in addition to total iron concentration. Future directions include evaluating recipes as prepared for consumption and comparison against human iron bioavailability studies.


2017 ◽  
Vol 118 (9) ◽  
pp. 698-706 ◽  
Author(s):  
Judith Hempel ◽  
Anja Fischer ◽  
Monique Fischer ◽  
Josef Högel ◽  
Anja Bosy-Westphal ◽  
...  

AbstractCarotenoid bioavailability from plant and animal food is highly variable depending on numerous factors such as the physical deposition form of carotenoids. As the carotenoid zeaxanthin is believed to play an important role in eye and brain health, we sought to compare the human bioavailability of an H-aggregated with that of a J-aggregated deposition form of zeaxanthin encapsulated into identical formulation matrices. A randomised two-way cross-over study with sixteen participants was designed to compare the post-prandial bioavailability of an H-aggregated zeaxanthin and a J-aggregated zeaxanthin dipalmitate formulation, both delivering 10 mg of free zeaxanthin. Carotenoid levels in TAG-rich lipoprotein fractions were analysed over 9·5 h after test meal consumption. Bioavailability from the J-aggregated formulation (AUC=55·9 nmol h/l) was 23 % higher than from the H-aggregated one (AUC=45·5 nmol h/l), although being only marginally significant (P=0·064). Furthermore, the same formulations were subjected to an internationally recognisedin vitrodigestion protocol to reveal potential strengths and weaknesses of simulated digestions. In agreement with our human study, liberation of zeaxanthin from the J-aggregated formulation into the simulated duodenal fluids was superior to that from the H-aggregated form. However, micellization rate (bioaccessibility) of the J-aggregated zeaxanthin dipalmitate was lower than that of the H-aggregated zeaxanthin, being contradictory to ourin vivoresults. An insufficient ester cleavage during simulated digestion was suggested to be the root cause for these observations. In brief, combining ourin vitroandin vivoobservations, the effect of the different aggregation forms on human bioavailability was lower than expected.


2017 ◽  
Vol 228 ◽  
pp. 91-98 ◽  
Author(s):  
I. Rodriguez-Ramiro ◽  
C.A. Brearley ◽  
S.F.A. Bruggraber ◽  
A. Perfecto ◽  
P. Shewry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document