scholarly journals Iron Bioavailability from Multiple Biofortified Foods Using an In Vitro Digestion, Caco-2 Assay for Optimizing a Cyclical Menu for a Randomized Efficacy Trial

2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Bryan M Gannon ◽  
Raymond P Glahn ◽  
Saurabh Mehta

ABSTRACT Background Inadequate nutritional status contributes to substantial losses in human health and productivity globally. A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is being conducted in India. Objective We sought to determine the relative iron bioavailability from biofortified and conventional crops and crop combinations representative of a cyclical menu using crops targeted for inclusion in the feeding trial. Methods Crops were procured from India, cooked, freeze-dried, and analyzed with an established in vitro digestion/Caco-2 iron bioavailability assay using a fixed sample weight. Crop proportions representative of meals planned for the human study were determined and combined such that samples included either all biofortified or all control crops. Crops were analyzed as single crops (n = 4) or crop combinations (n = 7) by variety (biofortified or control) in triplicate. The primary outcome was iron uptake measured by Caco-2 ferritin production normalized to total Caco-2 protein (nanograms of ferritin/milligrams of cell protein) analyzed for effects of crop variety and crop proportion using generalized linear models. Results Biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96; P = 0.036). Addition of sweet potato or sweet potato + pulse improved iron uptake for all proportions tested in control varieties and select proportions for biofortified varieties (P ≤ 0.05). Two multiple crop combinations demonstrated modestly higher iron uptake from biofortified crops. Conclusions Optimizing total iron delivery should consider matrix effects, processing, and promoters/inhibitors of iron absorption in addition to total iron concentration. Future directions include evaluating recipes as prepared for consumption and comparison against human iron bioavailability studies.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Bryan Gannon ◽  
Raymond Glahn ◽  
Saurabh Mehta

Abstract Objectives A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is planned in India. We sought to determine iron bioavailability from biofortified and conventional crop mixes representative of planned meal components. Methods A 24-meal menu was developed based on pearl millet, sweet potato, and lentils targeted for a feeding trial. Crops were procured from India, cooked, and freeze-dried before two rounds of an established in vitro digestion/Caco-2 iron bioavailability assay. Samples used a fixed weight adjusted for sweet potato water content. Representative crop proportions were determined using k-means clustering, combined such that samples included either all biofortified or all control crop varieties, and analyzed in triplicate. Outcomes were Caco-2 iron uptake and uptake normalized to iron per sample for fractional bioavailability. Data were analyzed with generalized linear models in SAS accounting for crop proportions and variety. Results Across both experiments, biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96 ng ferritin/mg protein, P ≤ 0.036). Addition of sweet potato to pearl millet did not change iron uptake for biofortified varieties (P ≥0.13), but increased control iron uptake for all amounts of sweet potato (P ≤ 0.006), which did not differ from biofortified varieties (P ≥ 0.08). Lentil proportion increased iron uptake (β = 4.6 ± 2.2, P = 0.009), with no effect of variety or a lentil by variety interaction (P ≥ 0.56). The overall effect estimate of biofortified vs. control was (β = 1.79 ± 0.91, P = 0.08). Iron uptake normalized to iron per sample was higher for control crops (P ≤ 0.02), and enhanced by sweet potato, while inhibited by pearl millet (both P < 0.001). Conclusions A Caco-2 assay predicts that biofortified pearl millet alone has greater iron bioavailability than control pearl millet. The addition of sweet potato and lentils increased overall and relative iron bioavailability, while reducing differences between biofortified and control varieties. Matrix effects, processing, and promoters/inhibitors of iron absorption should be considered in addition to total iron concentration when optimizing iron bioavailability. Funding Sources This work was supported by HarvestPlus and the USDA. Supporting Tables, Images and/or Graphs


2006 ◽  
Vol 95 (4) ◽  
pp. 721-726 ◽  
Author(s):  
Ilse Pynaert ◽  
Charlotte Armah ◽  
Susan Fairweather-Tait ◽  
Patrick Kolsteren ◽  
John van Camp ◽  
...  

The Fe solubility test is a commonly used, easy and relatively cheap in vitro tool for predicting Fe bioavailability in food matrices. However, the outcome of a recent field trial comparing the effect on Fe status of Tanzanian infants of processed V. unprocessed complementary foods (CF), with otherwise the same composition, challenged the validity of this test for predicting Fe bioavailability. In the solubility test, significant more soluble Fe was observed in processed compared with unprocessed foods (mean 18·8 (sem 0·21) V. 4·8 (sem 0·23) %; V<0·001). However, in the field trial, no significant difference in Fe status was seen between processed and unprocessed CF groups after 6 months' follow-up. Therefore, twenty-four samples of these CF (twelve processed and twelve unprocessed batches) were analysed in triplicate for Fe availability using an in vitro digestion–Caco-2 cell culture method and results were compared with solubility results. Significantly more soluble Fe was presented to Caco-2 cells in the processed compared with unprocessed samples (mean 11·5 (sem 1·16) V. 8·5 (sem 2·54) % p=0·028), but proportionally less Fe was taken up by the cells (mean 3·0 (sem 0·40)p. 11·7 (sem 2·22) %; p=0·007). As a net result, absolute Fe uptake was lower (not significantly) in processed compared with unprocessed CF (mean 1·3 (sem 0·16) V. 3·4 (sem 0·83) nmol/mg cell protein; p=0·052). These data clearly demonstrate that the Fe solubility test was not a good indicator of Fe bioavailability in these particular food matrices. In contrast, the results of an in vitro Caco-2 model supported the effects observed in vitro.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-50
Author(s):  
Kevin S Jerez Bogota ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine the effects of the period of predigesting whole stillage (WS; slurry material that is dried into DDGS) with multi-enzyme and composition of the multi-enzyme on porcine in vitro digestibility of dry matter (IVDDM) of the WS. Four samples of whole stillage from 4 different sources were freeze-dried and divided into 13 subsamples to give 52 sub-samples. Thirteen treatments were applied to the 48 sub-samples within source. The treatments were undigested WS (control); or pre-digested with 1 of 3 multi-enzymes (MTE1, MTE2, and MTE3) at 55 °C for 6, 12, 18 or 24 h in 3 × 4 factorial arrangement. The MTE1 contained xylanase, β-glucanase, cellulase, mannanase, protease, and amylase; MTE2 contained xylanase, α-galactosidase, and cellulase; and MTE3 contained xylanase, cellulase, β-glucanase, and mannanase. The 52 subsamples were subjected to porcine in vitro digestion. The IVDDM of untreated WS was 73.3%. The IVDDM increased (P&lt; 0.05) with an increase in the predigestion period. However, a rise in the predigestion period from 0 to 12 h resulted in greater (P&lt; 0.05) response in mean IVDDM than an increment in the predigestion period from 12 to 24 h (11 vs. 0.83 percentage points). Predigestion period and multi-enzyme type interacted on IVDDM such that the improvement in IVDDM between 0 and 12 hours of predigestion differed (P&lt; 0.05) among the 3 multi-enzyme types (13.3, 11.1, and 8.5 percentage points for MTE3, MTE2, and MTE1, respectively). The LS means by multi-enzyme treatment were modeled and resulted in unparallel curves (P&lt; 0.05). The estimated maximum response of IVDDM for MTE1, MTE2 and MTE 3 were 82.4%, 84.7% and 87.1% at 15.8, 13 and 13.1 hours, respectively. In conclusion, the optimal time of predigestion of WS with multi-enzymes (with regard to improvement in its IVDDM) was approximately 14 h.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1836-1836
Author(s):  
Magalie Sabatier ◽  
Joeska Husny ◽  
Marine Nicolas ◽  
Stèphane Dubascoux ◽  
Mary Bodis ◽  
...  

Abstract Objectives The two objectives were 1) to evaluate the solubility of two iron casein complexes (ICCs) under a condition mimicking gastric pH, 2) to evaluate the impact of ascorbic acid (AA) on the in vitro iron absorption of ICCs after incorporation in reconstituted whole milk powder. Methods The in vitro solubility was determined over time after addition of diluted HCl (pH 1.7), ultracentrifugation and measurement of iron appearing in the supernatant by ICP-OES (n = 2). The impact of AA on iron uptake from the Fe compounds in reconstituted milk was determined using the in vitro digestion coupled with the Caco-2 cell model and the measurement of ferritin/total protein produced by the cells (n = 3). The molar ratio of AA to iron of 2 to 1 recommended by the WHO for iron absorption optimization has been tested with an iron level corresponding to 3.3 mg Fe/serving of milk. Ferrous sulfate (FeSO4), the reference compound for iron bioavailability and micronized ferric pyrophosphate (FePP), main salt used for milk fortification were used as references. Results The dissolution test showed a rapid solubilization of iron from the ICCs i.e., &gt;75 ± 19.3% at 5 min and &gt;89 ± 0.3% at 90 min. The kinetics of soluble iron from the complexes were like that from FeSO4. The solubility of FePP was only 37.6 ± 4.7% at 90 min. Without AA, the iron uptake from FeSO4 was lower than expected translating into a relative in vitro bioavailability (iRBA) of FePP and of the two ICCs to FeSO4 of 66, 169 and 215%. This might be explained by a rapid conversion of soluble iron from FeSO4 into Fe3+ and insoluble iron hydroxide when the pH increased from 2 to &gt;7 during in vitro digestion. However, with the addition of AA in the milk, iron uptake by the cells was found to be increased to levels of 341.8 ± 8.9, 124 ± 12.2, 403.1 ± 117.8 and 362.9 ± 36.9 ng ferritin/mg protein for FeSO4, FePP and the two ICCs respectively. This translates into iRBAs to FeSO4 of 36% for FePP and of 118 and 106% for the two ICCs. Conclusions The solubility and the demonstrated impact of AA on Fe uptake suggest that ICCs are absorbed to a similar amount as FeSO4 and thus provide an excellent source of Fe. Funding Sources Société des Produits Nestlé, NPTC Konolfingen, Switzerland.


2020 ◽  
Vol 8 (5) ◽  
pp. 654
Author(s):  
Ester Betoret ◽  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Marco Dalla Rosa

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.


2009 ◽  
Vol 56 (6) ◽  
pp. 331-335 ◽  
Author(s):  
Yi-Ning Yeh ◽  
Ruo-Syuan Ho ◽  
Tan-Ang Lee ◽  
Chi-Fa Chow

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4561-4561 ◽  
Author(s):  
Germano Tarantino ◽  
Elisa Brilli ◽  
Ylenia Zambito ◽  
Giulio Giordano ◽  
Francesco Equitani

Abstract Introduction: Iron deficiency is one of the most widespread nutritional deficiencies. Globally two billion people are suffering from iron- deficiency anemia (Hermida et al., 2010). Oral therapy for iron deficiency is mainly based on immediate release formulations of ferrous iron. However, modified formulations have been marketed to reduce gastrointestinal side effects and to prevent iron instability in the gastrointestinal tract. Overcoming biological barriers, including the gastrointestinal epithelial barriers, is a great challenge for pharmaceutical research and thus there is a need for new absorption enhancers with more favorable profile. Sucrose esters are widely used in the food industry, and there are reports on their potential use in pharmaceutical formulations as excipients (Szuts A et al., 2008). In vitro methods using cell cultures have been proposed to assess iron bioavailability as an alternative to in vivo methods. Caco-2 cells have shown numerous morphological and biochemical characteristics of enterocytes and have been successfully used to study iron absorption (Garcia et al., 1996; Jovani et al., 2001). Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability of some components in Caco-2 monolayers. Recent data indicate that sucrose esters can enhance drug permeability through both the transcellular and paracellular routes (Kiss et al., 2014). Aim: The strong correlation between the published human absorption data and the iron uptake by Caco-2 cells makes them an ideal in vitro model to study iron bioavailability (Au and Reddy, 2000). For this, in the present study, we compared the bioavailability of innovative Oral Iron formulation based on Sucrosomial Iron¨ (Sideral¨) with three different Iron formulations (Figure 1). Materials and Methods: Sucrosomial Iron, preparation of ferric pyrophosphate convered by a phospholipids plus sucrose esters of fatty acids matrix; Lipofer¨, a water-dispersible micronised iron; Sunactive¨ ferric pyrophosphate, lecithin and emulsifiers. Results: The data showed that Sucrosomial Iron¨ (Sideral¨), is significantly more bioavaible than microencapsulated Ferric pyrophosphate ingredients, Lipofer¨ and Sunactive¨ and Ferrous Sulfate in Caco-2 cell model (Figure 1). Bibliography Au, A. P., Reddy, M. B. (2000). Caco-2 cells can be used to assess human iron bioavailability from a semipurified meal. J Nutr 130:1329-1334. Garcia et al. (1996). The Caco-2 cell culture system can be used as a model to study food iron availability. J Nutr 126:251-258. Hermida et al., Preparation and characterization of iron-containing liposomes: their effect on soluble iron uptake by Caco-2 cells Journal of Liposome Research, 2010, 1-10, Jovani et al. (2001) Calcium, iron, and zinc uptake from digests of infant formulas by Caco-2 cells. J Agric Food Chem 49:3480-3485. Kiss et al., (2014) Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells J Pharm Sci. Oct;103(10):3107-19. Szuts A et al. (2008) Study of the effects of drugs on the structures of sucrose esters and the effects of solid-state interactions on drug release J Pharm Biomed Anal. 48: Figure 1. the graph shows the Ferritin levels of Caco-2 cells after iron formulations treatment. Sucrosomial Iron treated cells display significant increase of Ferritin synthesis compared to Lipofer and SunActive treated cells. Figure 1. the graph shows the Ferritin levels of Caco-2 cells after iron formulations treatment. Sucrosomial Iron treated cells display significant increase of Ferritin synthesis compared to Lipofer and SunActive treated cells. Disclosures Tarantino: Pharmanutra s.p.a.: Employment. Brilli:Pharmanutra s.p.a.: Employment.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 460g-460
Author(s):  
Anusuya Rangarajan ◽  
John F. Kelly

Over the past few years, studies have been conducted exploring the variability in iron nutritional quality from a tropical vegetable, Amaranthus. In order to confirm previous iron bioavailability data, A. cruentus, A. hypochondriacus and A. tricolor lines were grown at the MSU Horticulture Research Center and then analyzed for total and in vitro bioavailable iron. Leaves were harvested 39 days after transplanting, washed, lyophilized and ground. Total iron levels were determined using atomic absorption spectroscopy and bioavailable iron estimates derived using an in vitro assay simulating gastrointestinal digestion. Among the lines tested, total iron concentrations ranged from 145 to 506 ppm. Bioavailable iron ranged from 44 to 70 ppm. Both the total and bioavailable iron measured were highest in A. tricolor, similar to results of previous years. Total iron values were lower for all of the lines than detected previously, but the range of bioavailable iron was similar to earlier work. Bioavailable iron estimated using the in vitro procedure does not appear to be greatly influenced by fluctuations in total iron content. Amaranth could provide between 44 and 70 mg Fe/100 gm fresh weight, equal to 20-35% of the daily Fe requirement for women, and 40-70% for men. Future experiments will utilize an animal bioassay to verify differences detected in bioavailable iron.


Sign in / Sign up

Export Citation Format

Share Document