scholarly journals Effects of 1,5-anhydroglucitol on postprandial blood glucose and insulin levels and hydrogen excretion in rats and healthy humans

2017 ◽  
Vol 118 (2) ◽  
pp. 81-91 ◽  
Author(s):  
Sadako Nakamura ◽  
Kenichi Tanabe ◽  
Kazuhiro Yoshinaga ◽  
Fumio Shimura ◽  
Tsuneyuki Oku

AbstractThe inhibition by 1,5-anhydro-d-glucitol (1,5-AG) was determined on disaccharidases of rats and humans. Then, the metabolism and fate of 1,5-AG was investigated in rats and humans. Although 1,5-AG inhibited about 50 % of sucrase activity in rat small intestine, the inhibition was less than half of d-sorbose. 1,5-AG strongly inhibited trehalase and lactase, whereas d-sorbose inhibited them very weakly. 1,5-AG noncompetitively inhibited sucrase. The inhibition of 1,5-AG on sucrase and maltase was similar between humans and rats. 1,5-AG in serum increased 30 min after oral administration of 1,5-AG (600 mg) in rats, and mostly 100 % of 1,5-AG was excreted into the urine 24 h after administration. 1,5-AG in serum showed a peak 30 min after ingestion of 1,5-AG (20 g) by healthy subjects, and decreased gradually over 180 min. About 60 % of 1,5-AG was excreted into the urine for 9 h following ingestion. Hydrogen was scarcely excreted in both rats and humans 24 h after administration of 1,5-AG. Furthermore, 1,5-AG significantly suppressed the blood glucose elevation, and hydrogen excretion was increased following the simultaneous ingestion of sucrose and 1,5-AG in healthy subjects. 1,5-AG also significantly suppressed the blood glucose elevation following the simultaneous ingestion of glucose and 1,5-AG; however, hydrogen excretion was negligible. The available energy of 1,5-AG, which is absorbed readily from the small intestine and excreted quickly into the urine, is 0 kJ/g (0 kcal/g). Furthermore, 1,5-AG might suppress the blood glucose elevation through the inhibition of sucrase, as well as intestinal glucose absorption.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2474
Author(s):  
Lyudmila V. Gromova ◽  
Serguei O. Fetissov ◽  
Andrey A. Gruzdkov

The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.


2015 ◽  
Vol 309 (11) ◽  
pp. E887-E899 ◽  
Author(s):  
Leo Ka Yu Chan ◽  
Po Sing Leung

Glucose is the prominent molecule that characterizes diabetes and, like the vast majority of nutrients in our diet, it is absorbed and enters the bloodstream directly through the small intestine; hence, small intestine physiology impacts blood glucose levels directly. Accordingly, intestinal regulatory modulators represent a promising avenue through which diabetic blood glucose levels might be moderated clinically. Despite the critical role of small intestine in blood glucose homeostasis, most physiological diabetes research has focused on other organs, such as the pancreas, kidney, and liver. We contend that an improved understanding of intestinal regulatory mediators may be fundamental for the development of first-line preventive and therapeutic interventions in patients with diabetes and diabetes-related diseases. This review summarizes the major important intestinal regulatory mediators, discusses how they influence intestinal glucose absorption, and suggests possible candidates for future diabetes research and the development of antidiabetic therapeutic agents.


2009 ◽  
Vol 29 (6) ◽  
pp. 419-425 ◽  
Author(s):  
Toru Takahashi ◽  
Takeo Yokawa ◽  
Noriyuki Ishihara ◽  
Tsutomu Okubo ◽  
Djong-Chi Chu ◽  
...  

2009 ◽  
Vol 8 (1) ◽  
Author(s):  
Joanna Hlebowicz ◽  
Jenny Maria Jönsson ◽  
Sandra Lindstedt ◽  
Ola Björgell ◽  
Gassan Darwich ◽  
...  

2021 ◽  
Vol 29 (4) ◽  
Author(s):  
Nur Salsabeela Mohd Rahim ◽  
Ida Farah Ahmad ◽  
Terence Yew Chin Tan

Syzygium polyanthum is a herb widely used in Malaysia and Indonesia in cuisines. Traditionally, the herbal decoction of S. polyanthum (daun salam) leaves is often used by diabetic patients in Indonesia. Therefore, our objective is to evaluate the scientific evidence available for S. polyanthum in lowering blood glucose levels (BGL). We systematically searched Pubmed, Google Scholar, Scopus, CENTRAL. LILAC and clinicaltrials.gov databases up to 23rd October 2020 using the keywords “Syzygium polyanthum” and “antidiabetic”. From the selected 413 articles, eight studies involving rodents were included. All results showed a significant effect in lowering BGL without any adverse effects. The possible underlying mechanism of action is attributed to inhibiting intestinal glucose absorption and enhancing glucose uptake by the muscles. Chemical families responsible for the effect were determined as flavonoids, alkaloids and terpenoids. Thus, S. polyanthum leaves showed potential antidiabetic properties, but further research is required to identify the active compounds followed by the safety evaluation of this compound.


1994 ◽  
Vol 71 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Christine Cherbut ◽  
S. Bruley Des Varannes ◽  
M. Schnee ◽  
Martine Rival ◽  
J-P. Galmiche ◽  
...  

Three dietary fibres with different physicochemical properties were studied in healthy humans for their effects on small intestinal motility and postprandial hyperglycaemia. Duodeno-jejunal motor activity was evaluated electromyographically for 180 min in six subjects who had ingested a test meal composed of glucose alone or glucose with 15 g of wheat bran (WB), sugar beet (SB) or ispaghula (I) fibres. Glucose and insulin concentrations were determined during the same period. Each subject received each of the four test meals randomly during a 4 d period. Addition of SB or I to the glucose meal altered duodeno-jejunal motility. Both of these fibres inhibited stationary contractile activity and increased the propagation length and velocity of propagated activity, whereas addition of WB had no effect. These results could reflect the high water-holding capacity of SB and 1. Blood glycaemic response to the glucose meal was reduced by SB and I but remained unchanged with WB. Postprandial blood glucose levels were significantly correlated with the total motility index (r 0·82) and stationary activity (r 0·79). Taken together, these observations suggest that the contractile activity induced by dietary fibre in the small intestine probably plays a major role in delayed glucose absorption.


Sign in / Sign up

Export Citation Format

Share Document