Transcriptional regulation mechanism of sterol regulatory element binding proteins on Δ6 fatty acyl desaturase in razor clam Sinonovacula constricta

2020 ◽  
Vol 124 (9) ◽  
pp. 881-889
Author(s):  
Zhaoshou Ran ◽  
Fei Kong ◽  
Jilin Xu ◽  
Kai Liao ◽  
Xiaojun Yan

AbstractThe razor clam, Sinonovacula constricta, contains high levels of long-chain PUFA (LC-PUFA), which are critical for human health. In addition, S. constricta is the first marine mollusc demonstrated to possess Δ6 fatty acyl desaturase (Fad) and complete LC-PUFA biosynthetic ability, providing a good representative to investigate the molecular mechanism of sterol regulatory element binding proteins (SREBP) in regulating Δ6 Fad for LC-PUFA biosynthesis in marine molluscs. Herein, S. constricta SREBP and Δ6 Fad promoter were cloned and characterised. Subsequently, dual luciferase and electrophoretic mobility shift assays were conducted to explore the SREBP binding elements in the core regulatory region of S. constricta Δ6 Fad promoter. Results showed that S. constricta SREBP had a very conservative basic helix-loop-helix-leucine zipper motif, while S. constricta Δ6 Fad promoter exhibited very poor identity with teleost Fads2 promoters, indicating their differentiation during evolution. A 454 bp region harbouring a core sequence in S. constricta Δ6 Fad promoter was predicted to be essential for the transcriptional activation by SREBP. This was the first report on the regulatory mechanism of LC-PUFA biosynthesis in marine molluscs, which would facilitate optimising the LC-PUFA biosynthetic pathway of bivalves in further studies.

2001 ◽  
Vol 276 (48) ◽  
pp. 45358-45366 ◽  
Author(s):  
Young-Ah Moon ◽  
Nila A. Shah ◽  
Suchismita Mohapatra ◽  
Janet A. Warrington ◽  
Jay D. Horton

2007 ◽  
Vol 8 (1) ◽  
pp. 62
Author(s):  
S. Rodriguez-Acebes ◽  
J. Martinez-Botas ◽  
A. Davalos ◽  
M.A. Lasuncion ◽  
R.B. Rawson ◽  
...  

2009 ◽  
Vol 29 (17) ◽  
pp. 4864-4872 ◽  
Author(s):  
Seung-Soon Im ◽  
Linda E. Hammond ◽  
Leyla Yousef ◽  
Cherryl Nugas-Selby ◽  
Dong-Ju Shin ◽  
...  

ABSTRACT We generated a line of mice in which sterol regulatory element binding protein 1a (SREBP-1a) was specifically inactivated by insertional mutagenesis. Homozygous mutant mice were completely viable despite expressing SREBP-1a mRNA below 5% of normal, and there were minimal effects on expression of either SREBP-1c or -2. Microarray expression studies in liver, where SREBP-1a mRNA is 1/10 the level of the highly similar SREBP-1c, demonstrated that only a few genes were affected. The only downregulated genes directly linked to lipid metabolism were Srebf1 (which encodes SREBP-1) and Acacb (which encodes acetyl coenzyme A [acetyl-CoA] carboxylase 2 [ACC2], a critical regulator of fatty acyl-CoA partitioning between cytosol and mitochondria). ACC2 regulation is particularly important during food restriction. Similar to Acacb knockout mice, SREBP-1a-deficient mice have lower hepatic triglycerides and higher serum ketones during fasting than wild-type mice. SREBP-1a and -1c have identical DNA binding and dimerization domains; thus, the failure of the more abundant SREBP-1c to substitute for activating hepatic ACC2 must relate to more efficient recruitment of transcriptional coactivators to the more potent SREBP-1a activation domain. Our chromatin immunoprecipitation results support this hypothesis.


1999 ◽  
Vol 10 (2) ◽  
pp. 143-150 ◽  
Author(s):  
Jay D. Morton ◽  
Lichiro Shimomura

2004 ◽  
Vol 134 (11) ◽  
pp. 2942-2947 ◽  
Author(s):  
Eimear Mullen ◽  
Rachel M. Brown ◽  
Timothy F. Osborne ◽  
Neil F. Shay

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alex K. Datsomor ◽  
Rolf E. Olsen ◽  
Nikola Zic ◽  
Angelico Madaro ◽  
Atle M. Bones ◽  
...  

AbstractThe in vivo functions of Atlantic salmon fatty acyl desaturases (fads2), Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2 in long chain polyunsaturated fatty acid (LC-PUFA) synthesis in salmon and fish in general remains to be elucidated. Here, we investigate in vivo functions and in vivo functional redundancy of salmon fads2 using two CRISPR-mediated partial knockout salmon, Δ6abc/5Mt with mutations in Δ6fads2-a, Δ6fads2-b, Δ6fads2-c and Δ5fads2, and Δ6bcMt with mutations in Δ6fads2-b and Δ6fads2-c. F0 fish displaying high degree of gene editing (50–100%) were fed low LC-PUFA and high LC-PUFA diets, the former containing reduced levels of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids but higher content of linoleic (18:2n-6) and alpha-linolenic (18:3n-3) acids, and the latter containing high levels of 20:5n-3 and 22:6n-3 but reduced compositions of 18:2n-6 and 18:3n-3. The Δ6abc/5Mt showed reduced 22:6n-3 levels and accumulated Δ6-desaturation substrates (18:2n-6, 18:3n-3) and Δ5-desaturation substrate (20:4n-3), demonstrating impaired 22:6n-3 synthesis compared to wildtypes (WT). Δ6bcMt showed no effect on Δ6-desaturation compared to WT, suggesting Δ6 Fads2-a as having the predominant Δ6-desaturation activity in salmon, at least in the tissues analyzed. Both Δ6abc/5Mt and Δ6bcMt demonstrated significant accumulation of Δ8-desaturation substrates (20:2n-6, 20:3n-3) when fed low LC-PUFA diet. Additionally, Δ6abc/5Mt demonstrated significant upregulation of the lipogenic transcription regulator, sterol regulatory element binding protein-1 (srebp-1) in liver and pyloric caeca under reduced dietary LC-PUFA. Our data suggest a combined effect of endogenous LC-PUFA synthesis and dietary LC-PUFA levels on srebp-1 expression which ultimately affects LC-PUFA synthesis in salmon. Our data also suggest Δ8-desaturation activities for salmon Δ6 Fads2 enzymes.


Sign in / Sign up

Export Citation Format

Share Document