Effects of copper sulphate and coated copper sulphate addition on lactation performance, nutrient digestibility, ruminal fermentation and blood metabolites in dairy cows

2020 ◽  
pp. 1-9
Author(s):  
C. Wang ◽  
L. Han ◽  
G. W. Zhang ◽  
H. S. Du ◽  
Z. Z. Wu ◽  
...  

Abstract Coated copper sulphate (CCS) could be used as a Cu supplement in cows. To investigate the influences of copper sulphate (CS) and CCS on milk performance, nutrient digestion and rumen fermentation, fifty Holstein dairy cows were arranged in a randomised block design to five groups: control, CS addition (7·5 mg Cu/kg DM from CS) or CCS addition (5, 7·5 and 10 mg Cu/kg DM from CCS, respectively). When comparing Cu source at equal inclusion rates (7·5 mg/kg DM), cows receiving CCS addition had higher yields of fat-corrected milk, milk fat and protein; digestibility of DM, organic matter (OM) and neutral-detergent fibre (NDF); ruminal total volatile fatty acid (VFA) concentration; activities of carboxymethyl cellulase, cellobiase, pectinase and α-amylase; populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes; and liver Cu content than cows receiving CS addition. Increasing CCS addition, DM intake was unchanged, yields of milk, milk fat and protein; feed efficiency; digestibility of DM, OM, NDF and acid-detergent fibre; ruminal total VFA concentration; acetate:propionate ratio; activity of cellulolytic enzyme; populations of total bacteria, protozoa and dominant cellulolytic bacteria; and concentrations of Cu in serum and liver increased linearly, but ruminal propionate percentage, ammonia-N concentration, α-amylase activity and populations of Prevotella ruminicola and Ruminobacter amylophilus decreased linearly. The results indicated that supplement of CS could be substituted with CCS and addition of CCS improved milk performance and nutrient digestion in dairy cows.

2013 ◽  
Vol 93 (2) ◽  
pp. 261-268 ◽  
Author(s):  
N. Schlau ◽  
L. Duineveld ◽  
W. Z. Yang ◽  
T. A. McAllister ◽  
M. Oba

Schlau, N., Duineveld, L., Yang, W. Z., McAllister, T. A. and Oba, M. 2013. Precision processing barley grain did not affect productivity of lactating dairy cows. Can. J. Anim. Sci. 93: 261–268. This study evaluated the effects of precision processing (PP; processing based on kernel size) barley grain on ruminal fermentation and productivity of lactating dairy cows. Twenty multiparous Holstein cows, including eight ruminally cannulated cows, were used in a replicated 4×4 Latin square design with 21-d periods. Diets contained light barley grain processed precisely using a narrow roller setting (LB), heavy barley processed precisely using a wide roller setting (HB), processed HB and LB mixed at equal proportions (PP), or equal parts of light and heavy barley grain processed at a single narrow roller setting (CON). All diets consisted of 40% barley grain, 40% barley silage, and 20% of a supplement premix. Comparisons were made between LB and HB to evaluate the effect of barley quality, and between PP and CON to evaluate the effect of precision processing. Dry matter intake, sorting index, ruminal fermentation characteristics, and nutrient digestibility were not affected by diet. In addition, milk yield and concentrations of milk fat, protein, and lactose were not different, although milk urea nitrogen concentration was greater for PP vs. CON and for LB vs. HB. These results suggest that precision processing barley grain based on kernel size may not drastically affect ruminal fermentation and milk production in lactating dairy cows.


2017 ◽  
Vol 1 (1) ◽  
pp. 108-115 ◽  
Author(s):  
D. L. Gadeken ◽  
D. P. Casper

Abstract Dairy producers continuously ask questions challenging the paradigm of how much forage can be included in the ration to meet the nutrient requirements of lactating dairy cows to support milk production. The production and feeding of forages having both high dry matter digestibility (DMD) and neutral detergent fiber digestibility (NDFd) are needed to increase nutrient supply. Mid- to late-lactation lactating Holstein dairy cows were blocked by parity (10 primiparous and 10 multiparous), milk production (range 33.9 to 56.6; μ = 41.5 kg/d), and days in milk (DIM) (range 140 to 287; μ = 225 d) and randomly assigned within blocks to 1 of 2 rations based on medium forage (MF) or high forage (HF) inclusion rates. A forage blend consisting of 60% second cutting (2012) alfalfa haylage and 40% (2012) corn silage blended on a DM basis and then fed at either 60% (MF) or 80% (HF) of the ration DM. The alfalfa haylage DM (DMD = 75.7%) and NDF (NDFd = 55.7%) digestibility was above average, but corn silage (DMD = 72.9, NDFd = 52.3%, and starch = 32.1%) was average. The experimental design was a randomized completed block design with 4 continuous weeks for data collection preceded by a 1 wk covariate data collection period in which all cows were fed the MF ration. Cows were milked 3 times/d and milk weights recorded at each milking and milk samples were collected at each milking once weekly for analysis of milk composition. Rations were similar in crude protein (CP; 16.4%), starch (20.1%), acid detergent fiber (ADF; 21.8%), and NDF (34.1%) concentrations. Covariately adjusted milk production (28.1 and 24.1 kg/d for MF and HF, respectively) and 4% fat-corrected milk (FCM; 27.6 and 24.1 kg/d) were significantly reduced by feeding the HF ration compared with cows fed the MF ration, while milk fat (3.98 and 4.0%), milk protein (3.11 and 3.17%), milk lactose (4.81 and 4.77%), and milk solids-not-fat (8.87 and 8.77%) percentages were similar for cows fed both rations. Cows on the HF ration demonstrated a significant reduction in DMI and a trend for decreased body weight (BW) when compared with cows fed the MF ration. The forage nutrient digestibility was not adequate to support the milk production of mid- to late-lactation dairy cows when fed at 80% of the DM. The forage nutrient digestibility when fed at very high inclusion rate (80%) could not meet the nutrient requirements of mid- to late-lactation dairy cows.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 114
Author(s):  
Gamonmas Dagaew ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Sarong So ◽  
Sineenart Polyorach

This study evaluates the effects of fresh cassava root (CR) and a solid feed-block containing sulfur (S-FB) on fermentation in the rumen, feed utilization, milk yield, and milk composition in lactating dairy cows. Four Holstein-Friesian cows with 470 ± 50.0 kg body weight (BW), 10 ± 2 kg day−1 average milk yield, and 112 ± 15 days-in-milk were studied. A 2 × 2 factorial combination was arranged in a 4 × 4 Latin square design to evaluate the treatment-related effects. The treatments were obtained from a combination of two factors: (1) levels of CR at 10 g kg−1 BW (CR-1) and 15 g kg−1 (CR-1.5) and (2) levels of sulfur supplementation in solid feed-block at 20 g kg−1 (S-FB-2) and 40 g kg−1 (S-FB-4). The results showed that CR and S-FB had no interaction effect on feed intake, digestibility, fermentation, blood metabolites, milk yield, or its composition. Feeding CR up to 15 g kg−1 of the BW significantly increased (p < 0.05) the milk fat concentration while it decreased (p < 0.05) the somatic cell count. The S-FB-4 of the sulfur significantly (p < 0.05) increased the acid detergent fiber when compared with the S-FB-2 of the sulfur. CR could be fed up to 15 g kg−1 of BW with S-FB containing high sulfur (40 g kg−1) in dairy cows without a negative impact.


2004 ◽  
Vol 71 (3) ◽  
pp. 279-287 ◽  
Author(s):  
Prasanth K Chelikani ◽  
John A Bell ◽  
John J Kennelly

We determined the effects of feeding canola oil or infusing it into the abomasum on rumen fermentation, nutrient digestibility, duodenal flows of fatty acids, and milk composition in Holstein cows. Five ruminally and duodenally cannulated Holstein cows in late lactation were used in a 3×5 incomplete Latin square design. Treatments were 1) Control: basal diet (CON), 2) Control+supplementation of canola oil at 1 kg/d in the feed (FED), and 3) Control+abomasal infusion of canola oil at 1 kg/d (INF). Compared with CON, feed intake, ruminal fermentation characteristics, ruminal and total tract digestibilities of nutrients were not significantly affected by FED treatment but duodenal flows and milk concentrations of fatty acids (FA) such as trans-11 18[ratio ]1 and cis-9 trans-11 18[ratio ]2 (conjugated linoleic acid, CLA) were increased. In contrast to the effects of FED, INF reduced feed intake, total VFA production, intestinal flows of nutrients, FA digestibility and yields of milk and milk fat. Both FED and INF significantly reduced the proportions of saturated and medium-chain FA, and increased cis 18[ratio ]1 in milk. Concentrations of 18[ratio ]2n-6 and 18[ratio ]3n-3 in milk were increased nearly 2-fold with INF relative to CON. Dietary or postruminal supplementation of canola oil to late-lactation cows reduced saturated FA and increased unsaturated C18 in milk but nutrient digestion was adversely affected with abomasal infusion of canola oil.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 919
Author(s):  
Verónica M. Merino ◽  
Lorena Leichtle ◽  
Oscar A. Balocchi ◽  
Francisco Lanuza ◽  
Julián Parga ◽  
...  

The aim was to determine the effect of the herbage allowance (HA) and supplement type (ST) on dry matter intake (DMI), milk production and composition, grazing behavior, rumen function, and blood metabolites of grazing dairy cows in the spring season. Experiment I: 64 Holstein Friesian dairy cows were distributed in a factorial design that tested two levels of daily HA (20 and 30 kg of dry matter (DM) per cow) and two ST (high moisture maize (HMM) and cracked wheat (CW)) distributed in two daily rations (3.5 kg DM/cow/day). Experiment II: four mid-lactation rumen cannulated cows, supplemented with either HMM or CW and managed with the two HAs, were distributed in a Latin square design of 4 × 4, for four 14-d periods to assess ruminal fermentation parameters. HA had no effect on milk production (averaging 23.6 kg/day) or milk fat and protein production (823 g/day and 800 g/day, respectively). Cows supplemented with CW had greater protein concentration (+1.2 g/kg). Herbage DMI averaged 14.17 kg DM/cow.day and total DMI averaged 17.67 kg DM/cow.day and did not differ between treatments. Grazing behavior activities (grazing, rumination, and idling times) and body condition score (BCS) were not affected by HA or ST. Milk and plasma urea concentration increased under the high HA (+0.68 mmol/L and +0.90 mmol/L, respectively). Cows supplemented with HMM had lower milk and plasma urea concentrations (0.72 mmol/L and 0.76 mmol/L less, respectively) and tended (p = 0.054) to have higher plasma β-hydroxybutyrate. Ruminal parameters did not differ between treatments.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 549
Author(s):  
Xiaoli Zhang ◽  
Chunyu Jiang ◽  
Qinghua Gao ◽  
Duanqin Wu ◽  
Shaoxun Tang ◽  
...  

This study evaluated the effects of alkyl polyglycoside (APG), which is a non-ionic surfactant, on lactation performance, nutrient digestibility and blood metabolites in dairy cows. Twenty dairy cows were randomly divided into four groups and fed a basal diet that included pelleted concentrate, distillers grains, and fresh limpograss. The four treatments included 0, 5.5, 11 and 22 mL APG per kg of pelleted concentrate on a dry matter basis; treatments were defined as APG0, APG5.5, APG11, and APG22, respectively. Dry matter intake was not affected by APG supplementation. There was an increase in milk yield (from 13.96 to 16.71 kg/day) and increases in milk fat (quadratic, p = 0.04), protein (quadratic, p = 0.10), and lactose concentrations (linear, p = 0.07) with increasing APG supplementation. In addition, APG supplementation increased (p ≤ 0.03) the milk fat, protein, solid non-fat, and total solid yields, while the lactose yield increased (linear, p = 0.01) as the APG level increased. Dietary APG supplementation had no effect on nutrient digestibility and blood metabolites. It was concluded that the addition of APG at doses up to 22 mL/kg of pelleted concentrate had positive effects on the milk composition in dairy cows.


2019 ◽  
Vol 4 (1) ◽  
pp. 214-228 ◽  
Author(s):  
Hugo F Monteiro ◽  
Ana Laura J Lelis ◽  
Virginia L N Brandao ◽  
Andressa Faccenda ◽  
Andre S Avila ◽  
...  

Abstract The objectives of this study were: 1) to compare the effects of live yeast (LY), yeast fermentation product (YFP), a mix of Lactobacillus acidophilus and Propionibacterium freudenreichii (MLP), and Lactobacillus plantarum included as additives in dairy cows’ diets on in vitro ruminal fermentation and gas production (GP); and 2) to evaluate the effects of L. plantarum as direct-fed microbials (DFM) in dairy cows’ diets on in vitro ruminal fermentation, GP, nutrient digestibility, and N metabolism. Three experiments were carried out: Exp. 1 had the objective to compare all additives regarding ruminal fermentation parameters: an Ankom GP system was used in a completely randomized design, consisting of four 48 h incubations, and eight replications per treatment. There were eight treatments: a basal diet without additive (CTRL) or with one of the following additives: LY, YFP, MLP, or L. plantarum at four levels (% of diet Dry Matter (DM)): 0.05% (L1), 0.10% (L2), 0.15% (L3), and 0.20% (L4). In Exp. 2, a batch culture was used to evaluate ruminal fermentation, and CO2 and CH4 production using the same treatments and a similar experimental design, except for having 16 replications per treatment. Based on Exp. 1 and 2 results, Exp. 3 aimed at evaluating the effects of the L. plantarum on ruminal true nutrient digestibility and N utilization in order to evaluate the use of L. plantarum as DFM. The treatments CTRL, MLP, L1, and L2 were used in a replicated 4 × 4 Latin square design using a dual-flow continuous culture system. Data were analyzed using linear and nonlinear regression; treatment means were compared through contrasts, and L treatments in Exp. 1 and 2 were tested for linear, quadratic, and cubic effects. In Exp. 1, all treatments containing additives tended to reduce OM digestibility as well as reduced total volatile fatty acids (VFA) concentration and total GP. The YFP had greater OM digestibility than LY, and MLP treatment had greater total VFA concentration compared to L. plantarum treatments. In Exp. 2, additives reduced CO2 production, and there were no major differences in CH4. In Exp. 3, all additives reduced NH3-N concentration. In conclusion, pH and lactate concentration were not affected in all three experiments regardless of additive tested, suggesting that these additives may not improve ruminal fermentation by pH modulation; and L. plantarum may improve ruminal N metabolism when used as DFM in high-producing dairy cows’ diets, mainly by reducing NH3-N concentration.


Author(s):  
N. Suphrap ◽  
C. Wachirapakorn ◽  
C. Thamrongyoswittayakul ◽  
C. Wongnen

The investigation aimed to study the effect of vegetable oil sources on feed intake, nutrient digestibility and biohydrogenation bacterial population in Thai Friesian dairy cows. Three fistula Thai Friesian cows with mean body weight (BW) of 600±100 kg were assigned to receive three vegetable oil sources i.e. palm oil (PO), soybean oil (SBO) and sunflower oil (SFO) included at 4 %DM in commercial concentrate. All cows were fed on different diets that contained concentrate of 1 %BW and rice straw of 1 %BW according to a 3×3 latin square design (LSD). The results revealed that dry matter digestibility (DMD) and organic matter digestibility (OMD) tended to be higher in cows fed on SBO and SFO (P=0.06). Moreover, the DNA copy numbers (copies/ml) of biohydrogenation bacteria (Ruminococcus albus) and cellulolytic bacteria (Ruminococcus flavefaciens and Prevotella ruminicola) were higher in cows fed on SBO (P less than 0.05). In summary, supplementation of SBO in diet resulted in a higher nutrient digestibility and rumen biohydrogenation bacteria population.


Sign in / Sign up

Export Citation Format

Share Document