Outbreaks of Bemisia tabaci Mediterranean species in vegetable crops in São Paulo and Paraná States, Brazil

2020 ◽  
Vol 110 (4) ◽  
pp. 487-496 ◽  
Author(s):  
Vinicius Henrique Bello ◽  
Luís Fernando Maranho Watanabe ◽  
Lucas Machado Fusco ◽  
Bruno Rossitto De Marchi ◽  
Felipe Barreto da Silva ◽  
...  

AbstractThe whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is one of the most important agricultural pests and virus vectors worldwide. Bemisia tabaci is considered a complex of cryptic species with at least 44 species. Among them, the species Middle East-Asia Minor 1 (MEAM1, formerly B biotype) and Mediterranean (MED, formerly Q biotype) are the most important, and they have attained global status. In Brazil, MEAM1 was first reported in the 1990s and is currently the predominant species in the country, meanwhile, MED was recently reported in the South and Southeast regions and was found to be mainly associated with ornamental plants. Currently, an increasing problem in the management of whitefly infestations in greenhouses associated with bell pepper was observed in São Paulo State, Brazil. The whiteflies were collected and identified based on a microsatellite locus (primer pair BEM23F and BEM23R) and the mitochondrial cytochrome oxidase I gene followed by restriction fragment length polymorphism analysis and sequencing. We observed that MED was the predominant species collected on bell pepper, but it was also found on tomato, cucumber, eggplant, and weeds grown in greenhouses. In open field, we found MED on tomatoes, bell peppers, and eggplants. In addition, MED was identified in Goiás State in association with ornamental plants. The begomovirus Tomato severe rugose virus and the crinivirus Tomato chlorosis virus was detected on bell pepper and tomato, respectively. Only MED specimens were found associated with the virus-infected plants. Moreover, we also investigated the endosymbionts present in the MED whiteflies. The collected populations of B. tabaci MED harbored a diversity of secondary endosymbionts, with Hamiltonella (H) found predominantly in 89 specimens of the 129 tested. These results represent a new concern for Brazilian agriculture, especially for the management of the newly introduced whitefly MED species, which must be implemented to limit the spreading and establishment of this pest in different crops in this country.

2005 ◽  
Vol 95 (1) ◽  
pp. 29-35 ◽  
Author(s):  
H. Delatte ◽  
B. Reynaud ◽  
M. Granier ◽  
L. Thornary ◽  
J.M. Lett ◽  
...  

AbstractFollowing the first detection of tomato yellow leaf curl virus (TYLCV) from R=union (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD–PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabaci.


2011 ◽  
Vol 68 (1) ◽  
pp. 120-123 ◽  
Author(s):  
Kelly Cristina Gonçales Rocha ◽  
Julio Massaharu Marubayashi ◽  
Jesús Navas-Castillo ◽  
Valdir Atsushi Yuki ◽  
Carlos Frederico Wilcken ◽  
...  

Bemisia tabaci (Genn.) is one of the most important pests in cultivated areas of vegetables and ornamental crops around the world. Based on the mitochondrial cytochrome oxidize I (mtCOI) sequence, there is evidence that B. tabaci should be considered a cryptic species complex of 11 groups containing 24 species. Two of the groups, Middle East-Asia Minor 1 and Mediterranean include biotypes B and Q, respectively. In this study we evaluated the mtCOI sequence of B. tabaci populations collected in sites of the state of São Paulo, Brazil. Using PCR-RFLP with Taq I, a typical biotype B profile was obtained for all specimens. Based on the comparison with mtCOI reference sequences we found four haplotypes all belonging to the Middle East-Asia Minor 1. They occurred in the hosts pepper (Capsicum annuum L.), tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.) and cucurbitaceae plants.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7690 ◽  
Author(s):  
Ting Xie ◽  
Ling Jiang ◽  
Jianshe Li ◽  
Bo Hong ◽  
Xinpu Wang ◽  
...  

Background Lecanicillium lecanii is an entomopathogenic fungi, which was isolated from insects suffering from disease. Now, it is an effective bio-control resource that can control agricultural pests such as whitefly and aphids. There are many studies on the control of various agricultural pests by L. lecanii, but no report on its control of Bemisia tabaci biotype-Q exists. In this work, we studied the susceptibility of B. tabaci Q-biotype (from Ningxia, China) to L. lecanii JMC-01 in terms of nymph mortality and the changes in detoxifying protective enzymes activities. Methods B. tabaci nymphs were exposed to L. lecanii JMC-01 conidia by immersion with the host culture. Mortality was assessed daily for all nymph stages. The detoxifying and protective enzyme activity changes, weight changes, and fat, and water contents of the nymphs were determined spectrophotometrically. Results All instars of B. tabaci died after being infested with 1 × 108 conidia/mL. The 2nd-instar nymphs were the most susceptible, followed by the 3rd-instar nymphs. The corrected cumulative mortality of the 2nd- and 3rd-instar nymphs was 82.22% and 75.55%, respectively. The levels of detoxifying and protective enzymes initially increased and then decreased. The highest activities of carboxylesterase, acetylcholinesterase, peroxidase, and catalase occurred on the 3rd day, reaching 10.5, 0.32, 20, and 6.3 U/mg prot, respectively. These levels were 2.2-, 4.3-, 2.4-, and 1.4-fold the control levels, respectively. The highest activities of glutathione-S transferase and superoxide dismutase on the 2nd day were, respectively, 64 and 43.5 U/mg prot. These levels were, respectively, 2.7 and 1.1-fold that of the control level. The water and fat content in the infected B. tabaci nymphs decreased and differed significantly from the control levels. The weight increased continuously in the first 24 h, decreasing thereafter. At 72 h, the infestation level was about 0.78-fold that of the control level. Conclusions The studied L. lecanii JMC-01 strain is pathogenic to the B. tabaci Q-biotype. This strain interferes with the normal functioning of detoxifying and protective enzymes, and is also involved in the disruption of normal physiological metabolism in B. tabaci.


2012 ◽  
Vol 103 (1) ◽  
pp. 89-97 ◽  
Author(s):  
K.L. Silva-Brandão ◽  
L.C. Almeida ◽  
S.S. Moraes ◽  
F.L. Cônsoli

AbstractTelchin licus, the giant sugarcane borer, is an important pest species of sugarcane in northeast Brazil. Four subspecies of Telchin licus are recognized in Brazil based on their geographic distribution and subtle differences in wing colour pattern. Some taxa are morphologically indistinguishable, and their accurate identification is key to their efficient control. Mitochondrial genes sequences (cytochrome oxidase I and subunit 6 of the nicotinamide adenine dinucleotide dehydrogenase) were applied to delimit taxonomic entities of T. licus, and to infer the origin of a newly established population in the state of São Paulo. The molecular data indicated that specimens sampled at different regions in Brazil are morphologically cryptic but genetically isolated entities, and at least three subspecies were assigned to the sampled localities. These data also suggested that the population collected from the state of São Paulo must have a common origin with populations from northeast Brazil, which corroborate the hypothesis that ornamental plants infested with larvae of T. licus might have been transported from the northeast to the southeast regions.


Plant Disease ◽  
2020 ◽  
Author(s):  
Arnaldo Esquivel-Fariña ◽  
Jorge Alberto Marques Rezende ◽  
William M. Wintermantel ◽  
Laura Jenkins Hladky ◽  
Daiana Bampi

Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) was identified in tomato crops in the state of São Paulo, Brazil in 2006. Management strategies to control external sources of inoculum are necessary, because chemical control of the whitefly vector Bemisia tabaci MEAM1 has not efficiently prevented virus infections and no commercial tomato cultivars or hybrids are resistant to this crinivirus. We first evaluated the natural infection rate of some known wild and cultivated ToCV-susceptible hosts and their attractiveness for B. tabaci MEAM1 oviposition. Physalis angulata was the most susceptible to natural infection in all six exposures in 2018 and 2019. No plants of Capsicum annuum (cv. Dahra) or Chenopodium album became infected. Solanum melongena (cv. Napoli) had only two infected plants of 60 exposed. C. annuum and C. album were the least preferred, and Nicotiana tabacum and S. melongena were the most preferred for whitefly oviposition. In addition, from 2016 to 2019, we surveyed different tomato crops and the surrounding vegetation to identify ToCV in weeds and cultivated plants in the region of Sumaré, São Paulo state. Only Solanum americanum, vila vila (S. sisymbriifolium) and C. album were found naturally infected, with incidences of 18%, 20% and 1.4%, respectively. Finally, we estimated the ToCV titer (isolates ToCV-FL, USA and ToCV-SP, Brazil) by RT-qPCR in different ToCV-susceptible host plants and evaluated the relationship between virus acquisition and transmission by B. tabaci MEAM1. The results clearly showed significant differences in ToCV concentrations in the tissues of ToCV-susceptible host plants, which appeared to be influenced by the virus isolate. The concentration of the virus in plant tissues, in turn, directly influenced the ToCV-B. tabaci MEAM1 relationship and subsequent transmission to tomato plants. To minimize or prevent the damage from the tomato yellowing disease through management of external sources of ToCV, it is necessary to correctly identify the potentially important ToCV-susceptible hosts in the vicinity of new plantings.


Bragantia ◽  
1994 ◽  
Vol 53 (1) ◽  
pp. 53-59 ◽  
Author(s):  
André Luiz Lourenção ◽  
Hiroshi Nagai

A partir de 1991, tem sido observada a presença da mosca-branca Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) em altas populações em hortaliças e orna-mentais nos municípios paulistas de Paulínia, Holambra, Jaguariúna e Artur Nogueira. Foram constatadas infestações severas em tomateiro, brócolos, berinjela e aboboreira; nesta última, o sintoma observado em plantas infestadas pela mosca-branca é o prateamento da face superior das folhas, em conjunto com queda drástica da produção. Uma lavoura de tomate severamente infestada por B. tabaci apresentava o sintoma referido colo amadurecimento irregular dos frutos do tomateiro; plantas invasoras presentes nessa área também foram intensamente colonizadas, principalmente Sida rhombifolia L., Sonchus oleraceus L., Solanum viarum Dun. e Ipomoea acuminata Roem. & Schult. Em Holambra, verificaram-se ataques intensos em plantas ornamentais, principalmente crisântemo (Chrysantemum morifolium Ramat.) e bico-de-papagaio (Euphorbia pulcherrima Willd.); roseiras foral pouco colonizadas. Nessas hortaliças e nas ornamentais, a aplicação quase diária de inseticidas não reduziu a infestação do inseto. Além dessas plantas, campos de algodão, em Holambra, e de feijão, em Paulínia, também foram infestados por B. tabaci. Nos E.U.A., a capacidade de certas populações de B. tabaci de induzir o prateamento da folha em aboboreira e de colonizar intensamente E. pulcherrima, entre outros fatores, têm levado à distinção do biótipo "B" ou "poinsétia", nome vulgar dessa euforbiácea; todavia, estudos recentes na Califórnia (E.U.A.) mostram a possibilidade de se tratar de duas espécies distintas. Dada a similaridade entre as infestações associadas a B. tabaci que vêm ocorrendo naquele país e, mais recentemente, no Brasil, é provável que o biótipo B ou essa nova espécie tenha sido aqui introduzido.


2010 ◽  
Vol 36 (3) ◽  
pp. 244-247 ◽  
Author(s):  
Denise Nakada Nozaki ◽  
Renate Krause-Sakate ◽  
Marcelo Agenor Pavan

Vírus do gênero Begomovirus são transmitidos por mosca-branca Bemisia tabaci G., e constituem um dos problemas fitossanitários sérios em diversas culturas. Plantas de pimentão coletadas em oito regiões do Estado de São Paulo, foram submetidas a extração de DNA total e PCR com primers universais e degenerados para begomovírus, que amplificam parte da região codificadora para a proteína capsicial. Os dados indicam a presença de begomovírus em pimentão nas cinco regiões coletadas. Análise das seqüências do DNA viral e análise filogenética revelaram identidade com dois begomovírus nativo da América. Tomato severe rugose virus - ToSRV (AY029750) e com Tomato yellow vein streak virus (ToYVSV, AY829113), espécies descritas infectando tomateiro no Brasil. A presença de begomovírus em pimentão foi verificada nas regiões de Alvinlândia, Ubirajara, Botucatu, Elias-Fausto, Paulínia, Mogi Guaçu, Paranapanema e Pirajú.


2015 ◽  
Vol 164 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Júlio C. Barbosa ◽  
Jorge A. M. Rezende ◽  
Lilian Amorim ◽  
Armando Bergamin Filho

2008 ◽  
Vol 50 (4) ◽  
pp. 195-198 ◽  
Author(s):  
Pedro Alves d'Azevedo ◽  
Guilherme H.C. Furtado ◽  
Eduardo A.S. Medeiros ◽  
Kelly Aline Santiago ◽  
Suzane Silbert ◽  
...  

E. faecium was the first reported VRE species, carrying the vanA gene in Brazil. In spite of this, vancomycin-resistant E. faecalis has become the predominant species in Brazilian hospitals. The aim of this study was to evaluate the genetic relatedness of VREs isolated in a Brazilian teaching hospital eight years apart from its first isolation. We analyzed 38 VRE strains obtained from 81 surveillance cultures of patients admitted to the four largest intensive care units in Hospital São Paulo in February, 2006. Presence of the vanA gene was assayed by PCR and PFGE analysis was used for molecular characterization. All VRE strains carried the vanA gene. Two distinct clonal groups were observed among vancomycin-resistant E. faecalis. Vancomycin-resistant E. faecium belonged to five distinct clones were demonstrated by molecular typing. All of these clones were different from the first vancomycin-resistant enterococci clone isolated eight years ago in our hospital.


Sign in / Sign up

Export Citation Format

Share Document