scholarly journals First report of the predatory mite Amblyseius tamatavensis Blommers, 1974 (Acari: Phytoseiidae) in Peru, and a key for the separation of the Amblyseius species reported so far from that country

2021 ◽  
Vol 3 ◽  
pp. ec03037
Author(s):  
Sofía Jiménez Jorge ◽  
Peterson R. Demite ◽  
Gilberto J. de Moraes

Phytoseiidae (Acari: Mesostigmata) is an important family of predatory mites, with some species being commercialized as biological control agents for the control of phytophagous mites and small insects. In Peru, 65 species of this family have been recorded so far, with Amblyseius being the most diverse genus, with 11 species. The aim of this study is to report for the first time the presence of Amblyseius tamatavensis Blommers, 1974 in Peru. In South America, this species has so far been reported only in Brazil and Venezuela. In Peru, A. tamatavensis was found on orange plants [Citrus sinensis (L.) Osbeck] in the district of Pangoa, department of Júnin. In the laboratory, collected specimens were observed to feed on Phyllocoptruta oleivora (Ashmed, 1879) (Acari: Eriophyidae) and Frankliniella occidentalis (Pergande, 1895) (Thysanoptera: Thripidae). Studies to verify the potential of this species as a biological control agent for pests occurring in Peru should be conducted. A key to the Amblyseius species recorded in Peru is presented.

2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


Weed Science ◽  
1986 ◽  
Vol 34 (S1) ◽  
pp. 33-34 ◽  
Author(s):  
Paul E. Parker

The use of nematodes as biological control agents has been met with skepticism, partly due to the newness of the approach and also to the potential difficulties of using a parasitic worm as a control organism. Most of the attention directed towards nematodes as biological control agents has been focused on several species that act as insect parasites. Considerable headway has been achieved with several of these parasites, especially with those parasitic on wood-boring insect larvae. The insect gallery of wood-boring larvae provides an optimum microclimate for the nematode to survive and seek out its larval insect host. A system where this strategy has proved successful involves the use of the insect parasitic nematodeNeoaplectana carpocapsaeWeiser as a biological control agent for carpenterworms (Prionoxystus robinaePeck) in fig (Ficus cariaL.) orchards in California (6). Similar systems are being developed both here and abroad with the same nematode or a closely related genus or species. Many of these systems show promise (5).


2004 ◽  
Vol 94 (2) ◽  
pp. 159-167 ◽  
Author(s):  
S. Jess ◽  
J.F.W. Bingham

AbstractIn small-scale experiments, the predatory mites, Hypoaspis aculeifer (Canestrini) and H. miles Berlese, applied at 700 mites m−2, and the entomopathogenic nematode, Steinernema feltiae (Filipjev) applied at 3 × 10−6 nematodes m−2 controlled sciarids and phorids in mushroom compost and casing substrates. For both mite species, earliest application to the growing substrate following sciarid infestation reduced sciarid emergence. In contrast, later application of each biological control agent provided more effective control of phorid emergence. The behaviour of adult mites suggested that H. aculeifer were more positively geotactic than H. miles although both species could penetrate compost and casing substrates to a depth of 2–12 cm. A majority of S. feltiae nematodes resided at a depth of 2–4 cm in both substrate types. Independent application of H. aculeifer provided more comprehensive control of sciarids and phorids than the other biological agents studied, owing to its better dispersal within compost and casing, and ability to attack larvae of differing ages.


Author(s):  
Judith H. Myers

The movement of humans around the earth has been associated with an amazing redistribution of a variety of organisms to new continents and exotic islands. The natural biodiversity of native communities is threatened by new invasive species, and many of the most serious insect and weed pests are exotics. Classical biological control is one approach to dealing with nonindigenous species. If introduced species that lack natural enemies are competitively superior in exotic habitats, introducing some of their predators (herbivores), diseases, or parasitoids may reduce their population densities. Thus, the introduction of more exotic species may be necessary to reduce the competitive superiority of nonindigenous pests. The intentional introduction of insects as biological control agents provides an experimental arena in which adaptations and interactions among species may be tested. We can use biological control programs to explore such evolutionary questions as: What characteristics make a natural enemy a successful biological control agent? Does coevolution of herbivores and hosts or predators (parasitoids) and prey result in few species of natural enemies having the potential to be successful biological control agents? Do introduced natural enemies make unexpected host range shifts in new environments? Do exotic species lose their defense against specialized natural enemies after living for many generations without them? If coevolution is a common force in nature, we expect biological control interactions to demonstrate a dynamic interplay between hosts and their natural enemies. In this chapter, I consider biological control introductions to be experiments that might yield evidence on how adaptation molds the interactions between species and their natural enemies. I argue that the best biological control agents will be those to which the target hosts have not evolved resistance. Classical biological control is the movement of natural enemies from a native habitat to an exotic habitat where their host has become a pest. This approach to exotic pests has been practiced since the late 1800s, when Albert Koebele explored the native habitat of the cottony cushion scale, Icrya purchasi, in Australia and introduced Vadalia cardinalis beetles (see below) to control the cottony cushion scale on citrus in California. This control has continued to be a success.


Sociobiology ◽  
2017 ◽  
Vol 64 (4) ◽  
pp. 477 ◽  
Author(s):  
Matheus Montefusco Oliveira ◽  
Flávia Batista Gomes ◽  
Alexandre Somavilla ◽  
Cristiane Krug

Wasps of the genus Polistes (Vespidae: Polistinae) are eusocial, considered valuable biological control agents. The objective of this work was to determine the resources collected by Polistes canadensis wasps, evaluate their performance and importance as a natural enemy and possible agent of biological control in the Brazilian Amazon. Between 8 October and 20 November of 2014, 20 evaluations were performed, totalizing 101 hours of observations of the foraging activity of an aggregation out in stage of development post-emergence with approximately 50 adult individuals distributed in 15 colonies. Additionally, observations of the predatory activity of Polistes canadensis on Plutella xylostella on a small organic plantation of kale (Brassica oleracea L. var. acephala DC), were also made. During the evaluations 1742 returns were recorded, 11.72% of them with prey, 3.10% with plant fiber, 16.76% with nectar, 45.17% with water and 23.25% without any visible load. All the preys identified were classified as Lepidoptera, belonging to ten morphospecies. Only one morphospecies was identified as Spodoptera frugiperda, which was the most commonly resource used by the wasps in 37 % in immature feeding. Only returns with nectar had statistically significant difference between the evaluated schedules.  Polistes canadensis wasps did not prey Plutella xylostella caterpillars. The wasp aggregation studied was able to prey an average of 10.2 caterpillars per day, which demonstrates the potential of this species for the biological control of pests in the Amazon region.


1995 ◽  
Vol 127 (3) ◽  
pp. 445-447 ◽  
Author(s):  
J.M. Schmidt ◽  
P.C. Richards ◽  
H. Nadel ◽  
G. Ferguson

The western flower thrips [Frankliniella occidentalis (Pergrande)] (Thysanoptera: Thripidae) is a major pest of greenhouse crops (Broadbent et al. 1987; van der Veire and Degheele 1992; Chambers et al. 1993). Chemical control of F. occidentalis is difficult because of its cryptic behaviour and widespread resistance to insecticides (Immaraju et al. 1992). The insidious flower bug, Orius insidiosus (Say), is widely promoted as an effective biological control agent for this pest (Chambers et al. 1993; van der Veire and Degheele 1992; Castane and Zalom 1994) and its use has increased steadily since their introduction in the late 1980s. When our project was initiated in 1989, O. insidiosus was a little known and largely unavailable biological control agent. Now there are several domestic and international commercial sources of Orius spp. and these predatory bugs have become a focus of research in Canada, the United States, and Europe. At first it was difficult and costly to maintain cultures of only 100 or 200 individuals but now we can rear 50000 — 100000 Orius per week for less than $0.03 (Canadian) each.


2016 ◽  
Vol 4 (5) ◽  
Author(s):  
Julien Crovadore ◽  
Gautier Calmin ◽  
Romain Chablais ◽  
Bastien Cochard ◽  
Torsten Schulz ◽  
...  

We report here the whole-genome shotgun sequence of the strain UASWS1507 of the species Pseudomonas graminis , isolated in Switzerland from an apple tree. This is the first genome registered for this species, which is considered as a potential and valuable resource of biological control agents and biofertilizers for agriculture.


2001 ◽  
Vol 54 ◽  
pp. 147-151 ◽  
Author(s):  
S.L. Goldson ◽  
C. Phillips ◽  
M.M. McNeill ◽  
J.R Proffitt ◽  
R.P. Cane

Several candidate biological control agents of Sitona lepidus have been identified since a search commenced in 1997 Interestingly Microctonus aethiopoides from Europe is a much more effective parasitoid of S lepidus than the M aethiopoides ecotype already established in New Zealand To assess further the suitability of the European M aethiopoides for biological control of S lepidus 1599 infected S lepidus were shipped to New Zealand quarantine during late 2000 These yielded 267 parasitoid pupae from which 204 adult parasitoids were reared This material was obtained from a wide geographical range in Europe and has been used to establish cultures in New Zealand quarantine based on genetic material from France England Norway Finland Romania Ireland Scotland Italy and Wales This contribution presents an overview of the work associated with the importation of the parasitoids and the effort now being made to maintain genetic diversity Planned research is also discussed


Sign in / Sign up

Export Citation Format

Share Document