An Evaluation of the Oil Concentration in Sesame Seeds in Relation to Developmental Stage, Node Position and Capsule Age

1984 ◽  
Vol 20 (2) ◽  
pp. 129-134
Author(s):  
S. N. Saha ◽  
S. C. Bhargava

SUMMARYWeekly measurements were made of the seed oil concentration (% dry weight) in five sesame genotypes (Sesamum indicum) from flowering to maturity. During early but not late development the oil concentration of main shoot capsules was less variable than that in capsules taken from branches. The oil concentration of seeds from capsules at different nodes decreased from 67 to 22% between the lowest (oldest) capsule at node 8 and the youngest one at the uppermost node (25) in 1976, and from 65 to 19% for the same nodes in 1977. Variations in oil accumulation in relation to capsule age revealed that oil formation begins within 5 days after fertilization and maximum accumulation (52% oil) was achieved after 30 days. The implications of these findings for the assessment of oil yield potential are discussed.

1984 ◽  
Vol 20 (2) ◽  
pp. 129-134
Author(s):  
S. N. Saha ◽  
S. C. Bhargava

SUMMARYWeekly measurements were made of the seed oil concentration (% dry weight) in five sesame genotypes (Sesamum indicum) from flowering to maturity. During early but not late development the oil concentration of main shoot capsules was less variable than that in capsules taken from branches. The oil concentration of seeds from capsules at different nodes decreased from 67 to 22% between the lowest (oldest) capsule at node 8 and the youngest one at the uppermost node (25) in 1976, and from 65 to 19% for the same nodes in 1977. Variations in oil accumulation in relation to capsule age revealed that oil formation begins within 5 days after fertilization and maximum accumulation (52% oil) was achieved after 30 days. The implications of these findings for the assessment of oil yield potential are discussed.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 39 ◽  
Author(s):  
Hamdy A. Zahran ◽  
Ahmed Abd-Elsaber ◽  
Hesham Z. Tawfeuk

The nutritional factors and characteristics of sesame (Sesame indicum L.) seeds and extracted oil of six genotypes: G2, G3, G4, G5 and G6 cultivated in Upper Egypt were subjected to comparative evaluation with control (G1), for its genetic diversity, physicochemical properties, fatty acid composition, antioxidant activity and oil oxidative stability (Rancimat test). Estimates of genotypic and phenotypic coefficients of variation revealed high value in seed yield. For heritability estimates, the data showed that four traits out of eight recorded the highest heritability values over of 90%. These traits were oil yield (99.56%), seed yield (98.83%), plant height (96.33%) and seed index (90.03%). Sesame seeds have a high oil content (39.56 to 54.64 g/100g dry weight). The fatty acid profile was varied among the genotypes, in particular oleic acid (37.15 to 46.61%) and linoleic acid (37.49 to 44.33%). Results indicated that G4 has significantly higher in most agricultural traits as well as seed yield, while the G5 was the highest in oil yield and has significantly higher oxidative stability (26.57 h) among the genotypes.


1972 ◽  
Vol 78 (2) ◽  
pp. 179-182 ◽  
Author(s):  
S. Abu-Shakra ◽  
A. Bassiri

SUMMARYSoya beans grown on land planted the previous year with inoculated soya beans produced more nodules, lodging, seed yield, 1000 seed weight, and protein content and less seed oil concentration as compared to those grown on land that was planted with non-inoculated soya beans. Nitrogen fertilization (120kg N/ha) reduced the total number of nodules per plant. Increasing inoculation rates of the seed increased the dry weight of nodules per plant. Location, nitrogen fertilization, and inoculation increased or decreased the levels of certain amino acids but had no significant effect on the sulphur amino acids, cystine and methionine.


2018 ◽  
Vol 69 (12) ◽  
pp. 1251
Author(s):  
Fei Ni ◽  
Jiahuan Liu ◽  
Jing Zhang ◽  
Mohammad Nauman Khan ◽  
Tao Luo ◽  
...  

Soluble sugar content in silique wall and seeds of rapeseed (Brassica napus L.) has significant effects on seed oil formation and accumulation. We studied the relationship between soluble sugar content in B. napus seeds and silique wall and oil concentration under field conditions in two cropping seasons, and examined changes in soluble sugar content in seeds and silique wall under different nitrogen (N) levels. Two commercialised Chinese rapeseed varieties, HZ9 and HZ62, with high seed yield and different N responses were used. Our results indicated that carbon (C):N ratio and soluble sugar content in silique wall had the greater effect on seed oil concentration. When C:N ratio and soluble sugar content in silique wall were within 5–15% and 10–25%, respectively, plants had relatively well coordinated C and N metabolism, facilitating oil accumulation. During 25–35 days of silique development, when C:N ratio and soluble sugar content in silique wall were within 10–15 and 15–25%, respectively, oil synthesis was fastest; the highest accumulation rate was 3.8% per day. When they were each <5%, seeds tended to mature, and oil synthesis gradually decreased, ceased or degraded. During the early stage of silique development, if C:N ratio and soluble sugar content in silique wall were >15% and 30%, there was no apparent tendency for oil accumulation, probably because of adverse environmental conditions. When N application increased from 0 to 270kg ha–1, final oil concentration in seeds decreased by 0.024%. In summary, C:N ratio and soluble sugar content in silique wall are important in regulating seed oil concentration, whereas excessive N application significantly reduced seed oil concentration. Therefore, appropriate reduction of N application would save resources, provide environment benefits and increase rapeseed oil production with no substantial reduction in seed yield, through coordinated seed yield and oil concentration.


2016 ◽  
Vol 67 (4) ◽  
pp. 419 ◽  
Author(s):  
R. M. Norton

The expansion of canola production in Australia coincided with an increase in cropping intensity and a reduction in pastures and tillage. These changes mean that nitrogen (N) is often recognised as the most limiting nutrient in canola production, and is the largest single input cost for many growers. Canola responds to added N by producing larger plants that results in a longer leaf area duration, building a larger photosynthetic canopy for seed filling. Although the crop can compensate for poor early growth, a larger canopy is able to compete more effectively against weeds and helps reserve water for crop transpiration rather than soil evaporation. Nitrogen uptake is most rapid during stem elongation, and the N acquired can be remobilised to developing pods and then to seeds. Unlike wheat, N uptake can continue until drought or high temperatures prevent further assimilate supply to the reproductive apex. Data from Australian experiments that measured N uptake over the whole growth period showed that each tonne of seed required ~80 kg N to be taken up, and this forms the basis of a budgeting approach for determining N supply. Typically, added N reduces seed oil concentration at a rate of between –0.03 and –0.13%/kg N. Despite this decline due to added N, oil yield usually increases and the overall value of the crop also increases. Nitrogen has little impact on oil quality or seed glucosinate concentration. The efficiency and effectiveness of N management depends first on selecting a rate appropriate to the water-limited yield potential. Most growers estimate the N rate required using an N budget based on supplying 80 kg N/t less indigenous N supply. The budgeted N can be split over two, three or even more applications with little loss in agronomic efficiency. Splitting application enables growers to make decisions about N when there is more certainty about seasonal conditions. Urea is the most common N source used, and unless there are particular loss processes that are likely to occur, it is cheap and effective. Suggested areas for future N research on canola are to develop tools that can assess in-crop N status, an evaluation of late season N product rate and timing particularly on seed oil concentration, N management for grazed canola, and the development of guidelines to identify, and then address, particular N loss pathways using enhanced efficiency fertilisers.


2019 ◽  
pp. 61-67

Recognition of high yielding and nitrogen (N) fixing groundnut genotypes and desegregating them in the cereal-based cropping systems common in savannah regions will enhance food security and reduce the need for high N fertilizers hence, minimize the high cost and associated environmental consequences. Field trials were conducted during the 2015 growing season at the Research Farms of Bayero University Kano (BUK) and Institute for Agricultural Research (IAR), Ahmadu Bello University, Samaru-Zaria to assess the yield potential and Biolog- ical N fixation in 15 groundnut genotypes (ICG 4729, ICGV-IS 07823, ICGV-IS 07893, ICGV-IS 07908, ICGV- SM 07539, ICGV- SM 07599, ICGV-IS 09926, ICGV-IS 09932, ICGV-IS 09992, ICGV-IS 09994, SAMNUT-21, SAMNUT-22, SAMNUT-25, KAMPALA and KWANKWAS). The groundnut genotypes and reference Maize crop (SAMMAZ 29) were planted in a randomized complete block design in three replications. N difference method was used to estimate the amount of N fixed. The parameters determined were the number of nodules, nod- ule dry weight, shoot and root dry weights, pod, and haulm yield as well as N fixation. The nodule dry weight, BNF, haulm, and pod yield were statistically significant (P<0.01) concerning genotype and location. Similarly, their interac- tion effect was also highly significant. ICGV-IS 09926 recorded the highest nod- ule dry weight of 2.07mg /plant across the locations while ICGV-IS 09932 had the highest BNF value of 140.27Kg/ha. Additionally, KAMPALA had the high- est haulm yield, while ICGV-IS 07893 had the highest pod yield across the loca- tions with a significant interaction effect. The result shows that ICGV-IS 07893 and ICGV-IS 09932, as well as ICGV-IS 09994 and SAMNUT – 22, were the best genotypes concerning BNF, haulm and pod yield in the Northern Guinea and Sudan Savannahs of Nigeria respectively with the potential for a corresponding beneficial effect.


Crop Science ◽  
2003 ◽  
Vol 43 (1) ◽  
pp. 135 ◽  
Author(s):  
A. J. Leon ◽  
F. H. Andrade ◽  
M. Lee

Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 587-594 ◽  
Author(s):  
Kelly A. Nelson ◽  
Karen A. Renner ◽  
Donald Penner

Field and greenhouse experiments were conducted in 1995 and 1996 to determine soybean injury and weed control differences from imazamox and imazethapyr applied postemergence with a nonionic surfactant or methylated seed oil and with selected tank mixtures. Soybean injury from imazamox at 35 g ai ha−1plus either a methylated seed oil or nonionic surfactant was equal to injury from imazethapyr at 70 g ai ha−1in the greenhouse and field. Imazamox provided greater common lambsquarters control than imazethapyr in the field in 1995 and in the greenhouse. Thifensulfuron tank mixed with imazethapyr increased common lambsquarters control, while soybean response increased when thifensulfuron was tank mixed with imazamox. Common ragweed dry weight was reduced 61 to 64% from 35 g ha−1imazamox and 70 g ha−1imazethapyr in the field; however, imazamox provided greater common ragweed control than imazethapyr in the greenhouse. Tank mixtures of lactofen with imazamox or imazethapyr increased common ragweed control and resulted in greater soybean seed yield in 1996 than when imazamox and imazethapyr were applied alone; however, lactofen antagonized giant foxtail control with imazamox and imazethapyr, and antagonized common lambsquarters control with imazamox. Giant foxtail control in the greenhouse was antagonized more when acifluorfen, fomesafen, and lactofen were tank mixed with 35 g ha−1imazethapyr than with 35 g ha−1imazamox. Giant foxtail control with imazamox or imazethapyr applied alone or with diphenyl ether herbicides increased when 28% urea ammonium nitrate was added with nonionic surfactant compared with nonionic surfactant only. Imazethapyr antagonized giant foxtail control by clethodim in the field and was more antagonistic than imazamox in the greenhouse. A methylated seed oil improved common ragweed control by imazethapyr at 70 g ha−1and imazamox at 18 and 35 g ha−1, while common lambsquarters and velvetleaf control increased when a methylated seed oil was included with 18 g ha−1imazethapyr compared to nonionic surfactant in the greenhouse.


2016 ◽  
Vol 5 (2) ◽  
pp. 104
Author(s):  
Helale Bahrami ◽  
Amir Ostadi Jafari ◽  
Jamshid Razmjoo

<p class="emsd-body"><span lang="EN-GB">Seeds of ten sesame cultivars (Karaj, Darab, Safiabad, Jiroft, Borazjan, Yellow-white, Felestin, Ultan, Isfahan and Abpakhsh) were sown into soil filled pots in 2008 and 2009. Pots were watered with six levels of salts (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup> NaCl) until full maturity. Plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of cultivars were measured. Increasing salinity caused significant reduction in plant height, root and shoot dry weight, yield and yield components, seed oil and protein contents of all cultivars. However, there were significant differences among the cultivars for measured traits for each salinity level. Based on seed oil yield data, Safiabad and Kraj at 0.0038ds.m<sup>-1</sup>, Safiabad and Ultan at 4.89ds.m<sup>-1</sup>, Ultan, Safiabad and Darab at 8.61 salinity levels were the superior cultivars. High variability in tolerance to salinity among the tested sesame cultivars suggests that selection of more salt tolerant cultivars for planting or breeding purposes is possible.</span></p><p class="emsd-body"><span lang="EN-GB">Highlights</span></p><p class="emsd-body"><span lang="EN-GB">Effects of contrasting salinity levels (0.0038 (tap water as control), 4.89, 8.61, 10.5, 14.54, 17.74 ds.m<sup>-1</sup>NaCl) on sesame cultivars were tested. Salinity reduced plant growth and yield and seed oil and protein contents. However, there were significant differences among the cultivars for measured traits for each salinity level. </span></p>


2021 ◽  
Vol 37 ◽  
pp. e37013
Author(s):  
Manoel Galdino Dos Santos ◽  
Rayanne Maria Paula Ribeiro ◽  
Hamurábi Anizio Lins ◽  
Giordanio Bruno Silva Oliveira ◽  
José Ricardo Tavares de Alburquerque ◽  
...  

Nitrogen (N) is an essential macronutrient for plant growth and rate applications can influence the performance of sesame, and when applied in excess can cause nitrogen loss in the environment, and consequently make the cost of production more costly to the producer. Therefore, the objective of this work was to evaluate the efficiency of nitrogen use by different cultivars of irrigated sesame seeds under the edaphoclimatic conditions of the northeastern semi-arid region in two harvests. The experiments were carried out from February to May (1st harvest) and from July to October (2nd harvest) in 2016. The treatments were arranged in a split plot scheme, in which the plots were the five nitrogen doses (0, 30, 60, 90 and 120 kg ha-1), and in the subplots, the four sesame genotypes (CNPA G2, CNPA G3, CNPA G4 and BRS Seda), the design was in randomized complete blocks with four replications. The nitrogen use efficiency assessments evaluated were: agronomic efficiency (AE), physiological efficiency (PE), agrophysiological efficiency (APE), recovery efficiency (RE) and efficiency of use (EU). The rate that provided the greatest efficiency of use was 30 kg ha-1 of N applied. The cultivar BRS Seda had greater efficiency of use in relation to the other cultivars studied. The crop that had better efficiency of use was the 2nd agricultural harvest.


Sign in / Sign up

Export Citation Format

Share Document