scholarly journals The limits to artificial selection for body weight in the mouse II. The Genetic Nature of the Limits

1966 ◽  
Vol 8 (3) ◽  
pp. 361-375 ◽  
Author(s):  
R. C. Roberts

1. The effects of long-continued selection for body weight in two lines of mice, one large and one small, are described.2. The large line showed a sharp increase in weight after remaining at an apparent limit for twenty generations. A rare combinational event is suggested as the most likely explanation.3. Reversed and relaxed selection from the large line at the limit failed to yield any response. This indicates that effectively, the additive genetic variance in this line had been exhausted.4. In contrast, the small line at the limit regressed slightly towards the base population when selection was relaxed. Reversed selection yielded a ready response until a new limit was apparently reached. Loci affecting body weight in this line had therefore not been fixed by selection.5. Natural selection, operating on viability between conception and the time when the selection was made, appears to explain best the lack of fixation in the small line.6. Attention is drawn to the necessity of more experimental work to elucidate the genetic nature of the limits to artificial selection.

1967 ◽  
Vol 9 (1) ◽  
pp. 87-98 ◽  
Author(s):  
R. C. Roberts

1. Two methods are examined of introducing new genetic variance into a line of mice selected for high 6-week weight which, at its limit, displayed no additive genetic variance.2. The first method—irradiation—gave largely negative results. Any further gain under selection that was achieved could not be clearly distinguished from a possible environmental trend.3. The second method—outcrossing to an unselected strain and then selecting from the cross—resulted in a clear gain over the original limit, but nine generations were required even to recover the original limit.4. Various methods of transcending selection limits are evaluated in terms of their application to livestock improvement.


2015 ◽  
Author(s):  
Zheya Sheng ◽  
Mats E Pettersson ◽  
Christa F Honaker ◽  
Paul B Siegel ◽  
Örjan Carlborg

Artificial selection has, for decades, provided a powerful approach to study the genetics of adaptation. Using selective-sweep mapping, it is possible to identify genomic regions in populations where the allele-frequencies have diverged during selection. To avoid misleading signatures of selection, it is necessary to show that a sweep has an effect on the selected trait before it can be considered adaptive. Here, we confirm candidate selective-sweeps on a genome-wide scale in one of the longest, on-going bi-directional selection experiments in vertebrates, the Virginia high and low body-weight selected chicken lines. The candidate selective-sweeps represent standing genetic variants originating from the common base-population. Using a deep-intercross between the selected lines, 16 of 99 evaluated regions were confirmed to contain adaptive selective-sweeps based on their association with the selected trait, 56-day body-weight. Although individual additive effects were small, the fixation for alternative alleles in the high and low body-weight lines across these loci contributed at least 40% of the divergence between them and about half of the additive genetic variance present within and between the lines after 40 generations of selection. The genetic variance contributed by the sweeps corresponds to about 85% of the additive genetic variance of the base-population, illustrating that these loci were major contributors to the realised selection-response. Thus, the gradual, continued, long- term selection response in the Virginia lines was likely due to a considerable standing genetic variation in a highly polygenic genetic architecture in the base-population with contributions from a steady release of selectable genetic variation from new mutations and epistasis throughout the course of selection.


1967 ◽  
Vol 9 (1) ◽  
pp. 73-85 ◽  
Author(s):  
R. C. Roberts

1. Four lines selected for large size were crossed to form a base population for further selection for high 6-week weight; three small lines were crossed similarly, and the crossbred population was selected for low 6-week weight.2. In every case, a cross between two selected lines resulted in heterosis increasing body weight. This shows that all of the selected lines were differentiated with respect to genes affecting body weight.3. Further selection for large size produced a stock whose mean weight was 25% higher than the largest of the original lines at its limit. But the response to selection for small size was slow, and after twenty-four generations of selection, the low weights of two of the original lines had not been recovered.4. The evidence points to linkage of genes affecting body weight in the mouse. It is suggested that this is a particular feature of crosses between previously selected lines, rather than a general feature of mouse populations.


1969 ◽  
Vol 11 (2) ◽  
pp. 414-425 ◽  
Author(s):  
P. D. Walton

The literature provides three explanations of the way in which genetic homeostasis functions. An attempt was made to determine which of these was applicable to the changes which occurred when selection for geotaxis was relaxed in certain strains of Drosophila melonogaster. The strains, for which selection stopped, were divided into two parts and generations were advanced in two environments. One was the same as that in which selection had been made and the other was new. When selection was relaxed strains reverted to a mean geotactic score close to that of the populations from which they had been selected. This change was more rapid in the new environment. A series of diallel crosses compared strains for which selection was continued with those for which it was relaxed. An analysis of the components of genetic variation showed that the principle change that had taken place was in the additive component of genetic variation. It was concluded that genetic homeostasis resulted from the action of natural selection on additive genetic variance, a conclusion which is in agreement with one of the three current hypotheses.


2016 ◽  
Vol 11 (3) ◽  
pp. 217
Author(s):  
Estu Nugroho ◽  
Budi Setyono ◽  
Mochammad Su’eb ◽  
Tri Heru Prihadi

Program pemuliaan ikan mas varietas Punten dilakukan dengan seleksi individu terhadap karakter bobot ikan. Pembentukan populasi dasar untuk kegiatan seleksi dilakukan dengan memijahkan secara massal induk ikan mas yang terdiri atas 20 induk betina dan 21 induk jantan yang dikoleksi dari daerah Punten, Kepanjen (delapan betina dan enam jantan), Kediri (tujuh betina dan 12 jantan), Sragen (27 betina dan 10 jantan), dan Blitar (15 betina dan 11 jantan). Larva umur 10 hari dipelihara selama empat bulan. Selanjutnya dilakukan penjarangan sebesar 50% dan benih dipelihara selama 14 bulan untuk dilakukan seleksi dengan panduan hasil sampling 250 ekor individu setiap populasi. Seleksi terhadap calon induk dilakukan saat umur 18 bulan pada populasi jantan dan betina secara terpisah dengan memilih berdasarkan 10% bobot ikan yang terbaik. Calon induk yang terseleksi kemudian dipelihara hingga matang gonad, kemudian dipilih sebanyak 150 pasang dan dipijahkan secara massal. Didapatkan respons positif dari hasil seleksi berdasarkan bobot ikan, yaitu 49,89 g atau 3,66% (populasi ikan jantan) dan 168,47 g atau 11,43% (populasi ikan betina). Nilai heritabilitas untuk bobot ikan adalah 0,238 (jantan) dan 0,505 (betina).Punten carp breeding programs were carried out by individual selection for body weight trait. The base population for selection activities were conducted by mass breeding of parent consisted of 20 female and 21 male collected from area Punten, eight female and six male (Kepanjen), seven female and 12 male (Kediri), 27 female and 10 male (Sragen), 15 female and 11 male (Blitar). Larvae 10 days old reared for four moths. Then after spacing out 50% of total harvest, the offspring reared for 14 months for selection activity based on the sampling of 250 individual each population. Selection of broodstock candidates performed since 18 months age on male and female populations separately by selecting based on 10% of fish with best body weight. Candidates selected broodstocks were then maintained until mature. In oder to produce the next generation 150 pairs were sets and held for mass spawning. The results revealed that selection response were positive, 49.89 g (3.66%) for male and 168.47 (11.43%) for female. Heritability for body weight is 0.238 (male) and 0.505 (female).


Genetics ◽  
1974 ◽  
Vol 76 (3) ◽  
pp. 537-549
Author(s):  
Gunther Schlager

ABSTRACT Response to two-way selection for systolic blood pressure was immediate and continuous for about eight generations. In the twelfth generation, the High males differed from the Low males by 38 mmHG; the females differed by 39 mmHg. There was little overlap between the two lines and they were statistically significant from each other and from the Random control line. There appeared to be no more additive genetic variance in the eleventh and twelfth generations. Causes for the cessation of response are explored. This is probably due to a combination of natural selection acting to reduce litter sizes in the Low line, a higher incidence of sudden deaths in the High line, and loss of favorable alleles as both selection lines went through a population bottleneck in the ninth generation.—In the eleventh generation, the selected lines were used to produce F1, F2, and backcross generations. A genetic analysis yielded significant additive and dominance components in the inheritance of systolic blood pressure.


2006 ◽  
Vol 35 ◽  
pp. 247-250
Author(s):  
H. Randle ◽  
E. Elworthy

The influence of Natural Selection on the evolution of the horse (Equus callabus) is minimal due to its close association with humans. Instead Artificial Selection is commonly imposed through selection for features such as a ‘breed standard’ or competitive ability. It has long been considered to be useful if indicators of characteristics such as physical ability could be identified. Kidd (1902) suggested that the hair coverings of animals were closely related to their lifestyle, whether they were active or passive. In 1973 Smith and Gong concluded that hair whorl (trichloglyph) pattern and human behaviour is linked since hair patterning is determined at the same time as the brain develops in the foetus. More recently Grandin et al. (1995), Randle (1998) and Lanier et al. (2001) linked features of facial hair whorls to behaviour and production in cattle. Hair whorl features have also been related to temperament in equines (Randle et al., 2003).


Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 989-1000
Author(s):  
Francis Minvielle

ABSTRACT A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.


1995 ◽  
Vol 65 (2) ◽  
pp. 145-149 ◽  
Author(s):  
Armando Caballero ◽  
Peter D. Keightley ◽  
William G. Hill

SummaryThe variation from spontaneous mutations for 6-week body weight in the mouse was estimated by selection from a cross of two inbred sublines, C57BL/6 and C57BL/10, separated about 50 years previously from the same inbred line. Selection was practised high and low for 12 generations from theF2, followed by one generation of relaxation. The lines diverged by approximately 1·7 g or 0·7 sd. The additive genetic variance was estimated in theF2by restricted maximum likelihood and from the selection response, and from this variance the mutational heritabilityhM2was estimated using the number of generations since divergence. Estimates ofhM2range from 0·08 to 0·10% depending on the method of analysis. These estimates are similar to those found for other species, but lower than other estimates for the mouse. It is concluded that substantial natural and, perhaps, artificial selection operated during the maintenance of the sublines.


Sign in / Sign up

Export Citation Format

Share Document