scholarly journals Mutational analysis of the rolA gene of Agrobacterium rhizogenes in tobacco: function of the rolA pre-mRNA intron and rolA proteins defective in their biological activity

1997 ◽  
Vol 69 (1) ◽  
pp. 11-15 ◽  
Author(s):  
A. SPENA ◽  
K. LANGENKEMPER

The rolA gene of Agrobacterium rhizogenes contains in its untranslated leader region a spliceosomal intron, which is spliced in Arabidopsis and in Nicotiana tabacum. Expression under the control of the 35S promoter from cauliflower mosaic virus of a rolA gene derivative defective in splicing still causes alterations of growth in transgenic tobacco plants. Splicing of rolA mRNA is required for efficient expression of the rolA phenotype in vivo. Moreover, splicing is required for efficient in vitro translation of the rolA mRNA. In contrast, expression of a 35S-rolA gene derivative with the ATG initiation codon replaced by ATA does not cause any phenotypical alteration. Mutations leading to amino acid substitutions at positions 37 and 40 of the rolA coding region were isolated as null mutants in Arabidopsis plants transgenic for the rolA gene. However, when expressed in tobacco under the control of the 35S promoter, they cause a rolA phenotype reduced in the expressivity of its traits. The molecular characterization of rolA mutants might be useful for understanding the biochemical function of the rolA protein.

2005 ◽  
Vol 83 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Benoit Coulombe ◽  
Marie-France Langelier

High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.Key words: RNA polymerase II, transcriptional mechanisms, mutational analysis, mRNA synthesis.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


Oncogene ◽  
2021 ◽  
Author(s):  
Pengpeng Zhu ◽  
Fang He ◽  
Yixuan Hou ◽  
Gang Tu ◽  
Qiao Li ◽  
...  

AbstractThe hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


2006 ◽  
Vol 17 (7) ◽  
pp. 3281-3290 ◽  
Author(s):  
Jing Xiao ◽  
Leslie S. Kim ◽  
Todd R. Graham

The auxilin family of J-domain proteins load Hsp70 onto clathrin-coated vesicles (CCVs) to drive uncoating. In vitro, auxilin function requires its ability to bind clathrin and stimulate Hsp70 ATPase activity via its J-domain. To test these requirements in vivo, we performed a mutational analysis of Swa2p, the yeast auxilin ortholog. Swa2p is a modular protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. In vitro, clathrin binding is mediated by multiple weak interactions, but a Swa2p truncation lacking two CB motifs and the UBA domain retains nearly full function in vivo. Deletion of all CB motifs strongly abrogates clathrin disassembly but does not eliminate Swa2p function in vivo. Surprisingly, mutation of the invariant HPD motif within the J-domain to AAA only partially affects Swa2p function. Similarly, a TPR point mutation (G388R) causes a modest phenotype. However, Swa2p function is abolished when these TPR and J mutations are combined. The TPR and J-domains are not functionally redundant because deletion of either domain renders Swa2p nonfunctional. These data suggest that the TPR and J-domains collaborate in a bipartite interaction with Hsp70 to regulate its activity in clathrin disassembly.


Genetics ◽  
1991 ◽  
Vol 128 (2) ◽  
pp. 203-213 ◽  
Author(s):  
M D Andrake ◽  
J D Karam

Abstract Biosynthesis of bacteriophage T4 DNA polymerase is autogenously regulated at the translational level. The enzyme, product of gene 43, represses its own translation by binding to its mRNA 5' to the initiator AUG at a 36-40 nucleotide segment that includes the Shine-Dalgarno sequence and a putative RNA hairpin structure consisting of a 5-base-pair stem and an 8-base loop. We constructed mutations that either disrupted the stem or altered specific loop residues of the hairpin and found that many of these mutations, including single-base changes in the loop sequence, diminished binding of purified T4 DNA polymerase to its RNA in vitro (as measured by a gel retardation assay) and derepressed synthesis of the enzyme in vivo (as measured in T4 infections and by recombinant-plasmid-mediated expression). In vitro effects, however, were not always congruent with in vivo effects. For example, stem pairing with a sequence other than wild-type resulted in normal protein binding in vitro but derepression of protein synthesis in vivo. Similarly, a C----A change in the loop had a small effect in vitro and a strong effect in vivo. In contrast, an A----U change near the base of the hairpin that was predicted to increase the length of the base-paired stem had small effects both in vitro and in vivo. The results suggest that interaction of T4 DNA polymerase with its structured RNA operator depends on the spatial arrangement of specific nucleotide residues and is subject to modulation in vivo.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 141-149 ◽  
Author(s):  
F. Payre ◽  
S. Noselli ◽  
V. Lefrere ◽  
A. Vincent

Serendipity (sry) beta (beta) and delta (delta) are two finger protein genes resulting from a duplication event. Comparison of their respective protein products shows interspersed blocks of conserved and divergent amino-acid sequences. The most extensively conserved region corresponds to the predicted DNA-binding domain which includes 6 contiguous fingers; no significant sequence conservation is found upstream and downstream of the protein-coding region. We have analysed the evolutionary divergence of the sry beta and delta proteins on two separate levels, their embryonic pattern of expression and their DNA-binding properties in vitro and in vivo. By using specific antibodies and transformant lines containing beta-galactosidase fusion genes, we show that the sry beta and sry delta proteins are maternally inherited and present in embryonic nuclei at the onset of zygotic transcription, suggesting that they are transcription factors involved in this process. Zygotic synthesis of the sry beta protein starts during nuclear division cycles 12–13, prior to cellularisation of the blastoderm, while the zygotic sry delta protein is not detectable before germ band extension (stage 10 embryos). Contrary to sry delta, the zygotic sry beta protein constitutes only a minor fraction of the total embryonic protein. The sry beta and delta proteins made in E. coli bind to DNA, with partly overlapping specificities. Their in vivo patterns of binding to DNA, visualised by immunostaining polytene chromosomes, differ both in the number and position of their binding sites. Thus changes in expression pattern and DNA-binding specificity have contributed to the evolution of the sry beta and delta genes.


1991 ◽  
Vol 11 (3) ◽  
pp. 1281-1294
Author(s):  
A C Lennard ◽  
M Fried

The ubiquitously expressed mouse Surf-1 and Surf-2 genes are divergently transcribed, and their heterogeneous start sites are separated by up to a maximum of only 73 bp. By using in vitro DNase I, dimethyl sulfate methylation, and gel retardation assays, we have identified five putative promoter control elements between and around the Surf-1 and Surf-2 start sites. The effects of each site on the regulation of Surf-1 and Surf-2 transcription have been studied in vivo, and four sites were found to be functional promoter elements. A novel binding site is required for efficient use of the intermediate but not the major start site of Surf-1. Three elements function in a bidirectional manner and are shared for efficient and accurate expression of both Surf-1 and Surf-2. One is an UEF (USF, MLTF) binding site which had a small effect on the use of the intermediate start sites of Surf-1 and also affected the major start sites of Surf-2. Another has sequence homology to the RPG alpha binding site associated with some ribosomal protein gene promoters and is required for efficient expression of the major but not intermediate start sites of Surf-1 and all start sites of Surf-2. The third, an RPG alpha-like site, is used for all start sites of both Surf-1 and Surf-2. Dissection of this cellular promoter region showed that different binding sites affect the use of different start sites and revealed a complex interaction between multiple elements that constitute a bona fide bidirectional promoter.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinyuan He ◽  
Yan Chen ◽  
Daisy Guiza Beltran ◽  
Maia Kelly ◽  
Bin Ma ◽  
...  

Abstract Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.


1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


Sign in / Sign up

Export Citation Format

Share Document