scholarly journals VII.—Mesozoic Volcanic Rocks of British Columbia and Chile. Relation of Volcanic and Metamorphic Rocks

1877 ◽  
Vol 4 (7) ◽  
pp. 314-317
Author(s):  
George M. Dawson

In Chile and adjacent regions of South America, Mr. Darwin, in his “Geological Observations,” has described a great series of Mesozoic rocks, which he calls the “porphyritic formation,” and which shows an interesting resemblance to certain rocks in British Columbia. These I had provisionally designated in my report in connexion with the Geological Survey of Canada for 1875, as the Porphyrite series, without at the time remembering Mr. Darwin's name for the Chilian rocks. Many of Mr. Darwin's descriptions of the rocks of Chile would apply word for word to those of British Columbia, where the formation would also appear to bear a somewhat similar relation to the Cascade or Coast Range, which that of Chile does to the Cordillera.

1998 ◽  
Vol 35 (5) ◽  
pp. 556-561 ◽  
Author(s):  
P J Patchett ◽  
G E Gehrels ◽  
C E Isachsen

Nd isotopic data are presented for a suite of metamorphic and plutonic rocks from a traverse across the Coast Mountains between Terrace and Prince Rupert, British Columbia, and for three contrasting batholiths in the Omineca Belt of southern Yukon. A presumed metamorphic equivalent of Jurassic volcanic rocks of the Stikine terrane gives epsilon Nd = +6, and a number of other metaigneous and metasedimentary rocks in the core of the Coast Mountains give epsilon Nd values from +3 to +7. A single metasedimentary rock approximately 3 km east of the Work Channel shear zone gives a epsilon Nd value of -9. Coast Belt plutons in the traverse yield epsilon Nd from -1 to +2. The Omineca Belt plutons give epsilon Nd from -10 to -17. All results are consistent with published data in demonstrating that (i) juvenile origins for both igneous and metamorphic rocks are common in the Coast Belt; (ii) representatives of a continental-margin sedimentary sequence with Precambrian crustal Nd are tectonically interleaved in the Coast Mountains; (iii) Coast Mountains plutons can be interpreted as derived from a blend of metamorphic rocks like those seen at the surface, or as arc-type melts contaminated with the older crustal component; and (iv) Omineca Belt plutons are dominated by remelted Precambrian crustal rocks.


1976 ◽  
Vol 13 (11) ◽  
pp. 1514-1536 ◽  
Author(s):  
Mordeckai Magaritz ◽  
Hugh P. Taylor Jr.

Early Tertiary and Mesozoic ground waters in British Columbia were low in δ18O and δD, making it easy to document interactions of meteoric-hydrothermal H2O with the Coast Range plutons. The isotopic data on the igneous rocks can be grouped as follows:[Formula: see text]Zone I represents the gneissic migmatite core of the batholith, west of the quartz-diorite line. Zone II is the granodioritic eastern part of the batholith, and Zone III is a broad zone that includes the Jurassic Topley intrusions and extends from the eastern edge of the batholith to the Pinchi fault zone. Only in Zone I are isotopically 'normal' plutonic rocks found, and even there small amounts of meteoric water were apparently responsible for the late sericitization. All of the rocks in Zones II and III underwent widespread interaction with hot meteoric H2O, including the volcanic and sedimentary country rocks which have δD = −113 to −167 and δ18O = 1.9 to 10.8. Values of δD biotite < −140 are found in essentially all of the low-18O rocks, as well as in those that have 18O-zoned quartz or high Δ18Oqz–feld. Dike rocks have δD similar to their host rocks, but are typically lower in 18O (has the finer grain size facilitated exchange?). The batholithic intrusions apparently created gigantic meteoric-H2O circulation systems, larger than has heretofore been documented. The calculated δD of the H2O is −120 ± 20 assuming T = 500 to 200 °C, indicating that about 45–55 m.y. ago, the meteoric H2O had a uniform δD throughout the area. However, samples from the 140 m.y. old Topley intrusions suggest more D-rich waters, perhaps indicating a warmer climate in the Jurassic. These higher-temperature meteoric-hydrothermal effects are not found east of Pinchi Lake, a terrane that includes the Permian Cache Creek formation and various sediments, volcanic rocks, and blueschists that have δD = −65 to −117 and δ18O = 13.5 to 28.4. This area lacks igneous intrusions, so the meteoric H2O interactions in this area occurred at much lower temperatures than in Zones II and III (≈ 100 °C). Only the finest-grained rocks underwent partial D/H exchange with the meteoric waters responsible for local silicification, serpentinization, and vein carbonate deposition.


1973 ◽  
Vol 10 (10) ◽  
pp. 1508-1518 ◽  
Author(s):  
Andrew V. Okulitch

The Kobau Group, found in south-central British Columbia, consists of highly deformed, low-grade metamorphic rocks derived from a succession of sedimentary and basic volcanic rocks of pre-Cretaceous, likely post-Devonian age. Deformation began in Carboniferous times and recurred with decreasing intensity up to the Tertiary Period. Possible correlative successions are found surrounding Mount Kobau. These include possibly late Paleozoic formations west and northwest of Mount Kobau, the Carboniferous to Permian Anarchist Group found south of the 49th parallel and east of the Okanagan Valley, the pre-Upper Triassic, possibly Mississippian Chapperon Group west of Vernon, and parts of the Shuswap Metamorphic Complex east of the Okanagan Valley. Prior to deposition of the Kobau Group, part of the Shuswap Complex was subjected to deformation, presumably in mid-Paleozoic time.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


1970 ◽  
Vol 107 (3) ◽  
pp. 235-247 ◽  
Author(s):  
W. E. Tremlett

SummaryEvidence of substantial dextral strike-slip displacements along the Caledonoid fault-set of northern Lleyn is revealed by the distribution of Pre-Cambrian igneous and metamorphic rocks, Ordovician volcanic rocks and Caledonian ‘early granodioritic’ intrusions. These apparently occurred prior to some smaller sinistral strike-slip movements which left total net dextral displacements of 91/2 km. Both types of movement were completed before the Caledonoid faults were disrupted by NNW sinistral faulting and more intrusions of Lower Old Red Sandstone age were emplaced.


1965 ◽  
Vol 2 (5) ◽  
pp. 442-484 ◽  
Author(s):  
Donald Carlisle ◽  
Takeo Susuki

The highly deformed section at Open Bay is one of the few good exposures of a thick sedimentary unit within the prebatholithic rocks along coastal British Columbia. It provides new structural information relating to emplacement of a part of the Coast Range batholith and it contains an important Upper Triassic fauna unusually well represented. Structural and paleontological analyses are mutually supporting and are purposely combined in one paper.Thirteen ammonite genera from 14 localities clearly substantiate McLearn's tentative assignment to the Tropites subbullatus zone (Upper Karnian) and suggest a restriction to the T. dilleri subzone as defined in northern California.Contrary to an earlier view, the beds are lithologically similar across the whole bay except for variations in the intensity of deformation and thermal alteration. Their contact with slightly older relatively undeformed flows is apparently a zone of dislocation. Stratigraphic thicknesses cannot be measured with confidence, and subdivision into "Marble Bay Formation" and "Open Bay Group" cannot be accepted. Open Bay Formation is redefined to include all the folded marble and interbedded pillow lava at Open Bay. Lithologic and biostratigraphic correlation is suggested with the lower middle part of the Quatsino Formation on Iron River, 24 miles to the southwest. Basalt flows and pillowed volcanics west of Open Bay are correlated with the Texada Formation within the Karmutsen Group.The predominant folding is shown to precede, accompany, and follow intrusion of numerous andesitic pods and to precede emplacement of quartz diorite of the batholith. Structural asymmetry is shown to have originated through gentle cross-folding and emplacement of minor intrusives during deformation.


Author(s):  

Abstract A new distribution map is provided for Xanthomonas gardneri (ex Sutic) Jones et al. Gammaproteobacteria: Xanthomonadales: Xanthomonadaceae. Hosts: tomato (Solanum lycopersicum) and pepper (Capsicum annuum). Information is given on the geographical distribution in Europe (Bulgaria and Russia), Asia (Malaysia), Africa (Ethiopia and Reunion), North America (Canada, British Columbia, Ontario, USA, Michigan, Ohio and Pennsylvania), Central America and Caribbean (Costa Rica) and South America (Brazil, Espirito Santo, Goias, Minas Gerais, Parana, Rio Grande do Sul and Santa Catarina).


Sign in / Sign up

Export Citation Format

Share Document