Time-evolution of magma sources in a continental back-arc setting: the Cenozoic basalts from Sierra de San Bernardo (Patagonia, Chubut, Argentina)

2008 ◽  
Vol 145 (5) ◽  
pp. 714-732 ◽  
Author(s):  
SANDRO BRUNI ◽  
MASSIMO D'ORAZIO ◽  
MIGUEL J. HALLER ◽  
FABRIZIO INNOCENTI ◽  
PIERO MANETTI ◽  
...  

AbstractEast of the Patagonian Andes, mafic volcanic rocks (mainly lava flows and scoriae) are exposed in the Sierra de San Bernardo fold belt and neighbouring areas (central Patagonia; 44.5–46° S, 69–71° W). They were erupted over a wide interval of time (late Eocene–Pleistocene; 14 new K–Ar ages), and show systematic chemical and Sr–Nd–Pb isotopic variations in time. The alkaline lavas (Mg number 57–66) erupted during the late Eocene and early Miocene, have an intraplate geochemical affinity, and have the highest 143Nd/144Nd and 206Pb/204Pb and the lowest 87Sr/86Sr ratios of the dataset. Their compositions indicate that their depth of equilibration in the mantle was greater than that of subsequent lavas. In contrast, the Plio-Pleistocene alkaline lavas (Mg number 58–71) are the most enriched in incompatible elements, still showing an intra-plate signature, and have the lowest 143Nd/144Nd and 206Pb/204Pb and the highest 87Sr/86Sr ratios. A distinctive group of early Miocene subalkaline lavas is characterized by slightly more evolved compositions (Mg number 56–59), coupled with very low incompatible element contents, flat LREE and fractionated HREE patterns (‘kinked’ pattern), and intermediate Sr–Nd–Pb isotope compositions. The Pleistocene basanites (Mg number 71–72) from the Cerro Ante monogenetic cone, on the easternmost slopes of the Patagonian Andes, have a marked orogenic geochemical signature and Sr–Nd–Pb isotope ratios that overlap with those of volcanic rocks from the adjacent active Andean arc. They originated in a mantle source extensively modified by the addition of materials from the subducting Pacific oceanic plates. We suggest that the wide chemical and isotopic variability of the Sierra de San Bernardo lavas reflects the upwelling of asthenospheric mantle beneath the study area, which induced lithospheric erosion and progressive involvement of enriched mantle domains in the genesis of magmas. In this context, late Eocene and early Miocene alkaline magmatism was dominantly sourced from the asthenospheric mantle, whereas Plio-Pleistocene alkaline magmas contain the largest proportion of an enriched lithospheric component. The peculiar compositional features of the early Miocene subalkaline lavas are interpreted in terms of high-degree mantle melting followed by melt–lithospheric mantle reaction processes. Based on current knowledge about the relative movement and decoupling between lithosphere and asthenosphere, we propose that the asthenosphere below the study area rose up to compensate for the westward drift of the mantle wedge coupled with the South American lithosphere.

2019 ◽  
Vol 70 (3) ◽  
pp. 222-240 ◽  
Author(s):  
Irena Brunarska ◽  
Robert Anczkiewicz

Abstract The Teschenite Association Rocks (TAR) in the Outer Western Carpathian (OWC) flysch form a classic suite of alkaline intrusions where teschenite and picrite were first defined. They represent continental intraplate volcanism that produced a wide range of melano- to mesocratic rocks emplaced during the Early Cretaceous rifting within the southern margin of the European Plate. Geochemical modelling indicates that they may be a product of ~2–5 % partial melting of the metasomatised, asthenospheric mantle. The variations in REE (low / heavy REE content, LaN/YbN = 11–34) are consistent with deep melting of garnet peridotite. Initial ε(Nd)i = 5.0–6.3 and ε(Hf)i = 4.9–10.0 preclude the significant mature crust involvement. Instead, a linear array formed by the 143Nd/144Nd and 176Hf/177Hf isotopic ratios points to a genesis from the mixed, HIMU–OIB source with the more depleted, MORB-type component. Mantle metasomatism was most likely caused by the Variscan subduction–collision processes as indicated by the depleted mantle Nd model ages. The isotope and trace element ratios of the TAR resemble the European Asthenospheric Reservoir (EAR) — the common mantle end-member for the widespread Cenozoic volcanic rocks in Europe. This confirms a long-term existence of the EAR mantle component beneath the Central Europe, at least since the Early Cretaceous. In situ laser-ablation ICP-MS U–Pb dating of titanite indicates short duration of mafic alkaline magmatism in the OWC, lasting from 123.7 ± 2.1 to 117.9 ± 1.8 Ma. Emplacement of the TAR is correlated with the maximum lithospheric thinning that triggered adiabatic decompression and partial melting of the upwelling asthenospheric mantle. Magmatism ceased most likely due to transition to the dominantly compressive regime associated with the major stress field reorganization directly preceding the Carpathian– Alpine Orogeny.


2020 ◽  
Vol 57 (9) ◽  
pp. 1048-1065
Author(s):  
Ghosoun Zheira ◽  
Fariborz Masoudi ◽  
Bahman Rahimzadeh

Two different types of igneous rock formed during separate Cenozoic magmatic phases in the Varan-Naragh area in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran as a part of the Alpine-Himalayan system. The first phase comprises late Eocene – early Oligocene Naragh gabbroic rocks (Ns), and the second phase is characterized by the emplacement of both volcanic and plutonic rocks of the early Miocene. Both phases display moderate enrichment of large rare earth elements and depletion of high field strength elements coupled with negative Nb, Ti, and P anomalies, indicative of subduction-related magmatic events within an active continental margin. Initial values of 87Sr/86Sr and εNdT are 0.70684 and +0.15 and 0.70560–0.70654 and +2.55 to +3.49 for Ns and early Miocene intrusive and volcanic rocks, respectively. Comparisons of rare earth element patterns and mantle-like isotopic ratios suggest that Ns mafic and early Miocene magmatic rocks were derived from partial melting of a common subcontinental lithospheric mantle. Geochemical and isotopic ratios of Ns gabbroic rocks, in combination with the data related to other coeval and proximal mafic-intermediate intrusions (such as Nashalj), suggest enrichment of the lithospheric mantle by slab-derived fluids with a minor subducted sediment melt. The low εNdT of Ns gabbroic rocks can reflect involvement of slab-derived components. The geochemical similarity and the close spatial and temporal association of Varan intrusive and volcanic rocks suggest a common petrogenetic relationship. Geochemical, isotopic, and geochronological evidence from the region indicate three major phases of igneous activity in the Kashan magmatic segment of the central UDMA during late Eocene to Miocene, resulting in complex tectonic regime transition from compressional subduction to extensional post-collisional settings. Integrated with published studies, the new results support a model suggesting that subduction-related magmatic activity was still influencing the central UDMA in the early Miocene time and are also consistent with the notion of oblique and diachronous collision along the northeast margin of the Arabia plate.


Over the last 200 Ma, the ensialic Andean plate margin has been characterized by calc-alkaline magmatism. The early (Mesozoic), activity was dominantly of basaltic volcanism while the Cainozoic volcanism was of intermediate, calc-alkaline character. The restriction of Recent volcanism to parts of the Andes underlain by thick wedges of asthenospheric mantle, and the Sr and Nd isotopic relations, indicate that the calc-alkaline parental magmas are derived from the asthenospheric mantle. There is no unequivocal geochemical and geophysical evidence that continental crust or sediment has contributed to the mantle source for Andean magmatism. The chemical compositions of the calc-alkaline volcanic rocks of the active volcanic zones are controlled by fractional crystallization, whereas O-Sr isotopic relations reflect crustal interaction of mantle-derived parental magma with the sialic basement of the Andes. The variable extent of fractional crystallization, partial melting, and mixing of crustal contaminant are related to the variable thickness and age of crust in the different volcanic provinces. Calc-alkaline magmatism was largely responsible for post-Mesozoic crustal growth in the Andes and would have depleted the underlying mantle unless balanced by circulation within the asthenospheric mantle wedge. In terms of net growth of the South American continent, it is not certain where the balance lies between growth by magmatic addition and shrinking by erosion.


2021 ◽  
pp. 1-22
Author(s):  
Jia-Hao Jing ◽  
Hao Yang ◽  
Wen-Chun Ge ◽  
Yu Dong ◽  
Zheng Ji ◽  
...  

Abstract Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.


2014 ◽  
Vol 55 ◽  
pp. 1-18 ◽  
Author(s):  
Alfonso Encinas ◽  
Felipe Pérez ◽  
Sven N. Nielsen ◽  
Kenneth L. Finger ◽  
Victor Valencia ◽  
...  

Tectonics ◽  
2018 ◽  
Vol 37 (10) ◽  
pp. 3970-3985 ◽  
Author(s):  
Yani Najman ◽  
Stuart D. Burley ◽  
Alex Copley ◽  
Michael J. Kelly ◽  
Kaushal Pander ◽  
...  

2021 ◽  
Author(s):  
Taylor Ducharme ◽  
Iwona Klonowska ◽  
David Schneider ◽  
Bernhard Grasemann ◽  
Kostantinos Soukis

<p>Southern Evia in Greece exposes an inverted high pressure-low temperature (HP-LT) metamorphic sequence that has been loosely correlated with the Cycladic Blueschist Unit (CBU). On the island, the CBU is divided into the metavolcanic and ophiolitic Ochi Nappe and predominantly metacarbonate Styra Nappe. A lower-grade unit, the Almyropotamos Nappe, is exposed in the core of a N-S trending antiform and comprises Eocene platform carbonates overlain by metaflysch. The Almyropotamos Nappe occupies a tectonic window defined by the Evia Thrust, a brittle-ductile fault zone that emplaced the Ochi and Styra nappes atop the Almyropotamos Nappe. New multiple single-grain white mica total fusion <sup>40</sup>Ar/<sup>39</sup>Ar ages indicate that deformation occurred along the Evia Thrust at 25-23 Ma. White mica <sup>40</sup>Ar/<sup>39</sup>Ar data on either side of the tectonic window record Eocene dates between 40 and 32 Ma, consistent with previously published <sup>40</sup>Ar/<sup>39</sup>Ar dates and a single Rb-Sr age of c. 30 Ma. These ages broadly coincide with estimates for the timing of NE-directed thrusting of the Ochi Nappe over the Styra Nappe. Strain associated with thrusting localized as cylindrical folds in Styra marbles, with fold axes parallel to the stretching lineation and a clear strain gradient increasing toward the upper contact with the Ochi Nappe. The most prominent structures in the Ochi Nappe are a strong L-S fabric defined by acicular blue amphibole and type-3 refold structures with fold axes trending parallel to the NE-SW oriented stretching lineation. Whereas the Ochi Nappe and Styra Nappe locally preserve peak blueschist facies mineral assemblages, all three units commonly display evidence only for retrogressed initial HP-LT assemblages in the form of ferroglaucophane inclusions in albite porphyroblasts. Isochemical phase diagrams calculated in the Na<sub>2</sub>O-CaO-K<sub>2</sub>O-FeO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-H<sub>2</sub>O-TiO<sub>2</sub>±O<sub>2</sub> system support minimum peak metamorphic conditions of 12.5 ± 1.5 kbar and 465 ± 75 °C for an Ochi Nappe blueschist, and 6.0 ± 0.5 kbar and 315 ± 15 °C for an albite mica schist from the Evia Thrust. Peak P-T conditions for the Ochi Nappe support a metamorphic history more closely resembling that of the Lower Cycladic Blueschist Nappe, indicating that the entire section of the CBU exposed on Evia lies below the Trans-Cycladic Thrust. The Early Miocene ages from the Evia Thrust overlap with the proposed timing for the initiation of bivergent greenschist facies extension in the Cyclades. The remainder of the region, including high-strain corridors within individual nappes such as the Almyropotamos Thrust, uniformly records Eocene deformation ages. The similarity in <sup>40</sup>Ar/<sup>39</sup>Ar ages across the tectonic window contrasts with age relationships observed in similar tectonic packages on Lavrion, and suggests that regional scale deformation persisted until the Late Eocene before strain became localized in brittle-ductile corridors by the Early Miocene. </p>


1976 ◽  
Vol 13 (2) ◽  
pp. 348-354 ◽  
Author(s):  
J. P. N. Badham ◽  
R. D. Morton

The Camsell River area comprises a roof pendant of volcanic rocks within an Aphebian (~1800 m.y.) orogenic belt. Magnetite–apatite intrusions and related bodies are common and are closely associated with plutons of intermediate composition. The magnetitic intrusions are interpreted as immiscible liquids that separated from a magma of intermediate composition. The immiscible fractions were predominantly crystalline when they reached their present higher levels, and final emplacement was facilitated by volatile-streaming and fluidization. Their presence in the orogenic belt is taken as further support for the hypothesis that the orogen was of Andean type.


1994 ◽  
Vol 68 (2) ◽  
pp. 279-286 ◽  
Author(s):  
Amalia M. Olivera ◽  
William J. Zinsmeister ◽  
S. Graciela Parma

A new Tertiary gastropod genus, Peonza n. gen., is described, along with two new species, P. torquata from southern Argentina and P. benjamina from southern Chile. These muricacean gastropods, of uncertain familial status, occur in the late Eocene San Julián Formation and in the late Oligocene to early Miocene? Monte León Formation, Santa Cruz Province, Argentina. They also were recorded in the (probably) Oligocene Magellanian beds in Tierra del Fuego, Argentina, and in early Miocene deposits of the Tres Montes region in the Chilean Canals. In spite of the small number of specimens, Peonza n. gen. seems to have had a wide geographic and temporal distribution.


Sign in / Sign up

Export Citation Format

Share Document