Fluid flow within the damage zone of the Boccheggiano extensional fault (Larderello–Travale geothermal field, central Italy): structures, alteration and implications for hydrothermal mineralization in extensional settings

2010 ◽  
Vol 148 (4) ◽  
pp. 558-579 ◽  
Author(s):  
FEDERICO ROSSETTI ◽  
LUCA ALDEGA ◽  
FRANCESCA TECCE ◽  
FABRIZIO BALSAMO ◽  
ANDREA BILLI ◽  
...  

AbstractThe Neogene extensional province of southern Tuscany in central Italy provides an outstanding example of fossil and active structurally controlled fluid flow and epithermal ore mineralization associated with post-orogenic silicic magmatism. Characterization of the hydrodynamic regime leading to the genesis of the polysulphide deposit (known as Filone di Boccheggiano) hosted within the damage zone of the Boccheggiano Fault is a key target to assess modes of fossil hydrothermal fluid circulation in the region and, more generally, to provide inferences on fault-controlled hydrothermal fluid flow in extensional settings. We provide a detailed description of the fault zone architecture and alteration/mineralization associated with the Boccheggiano ore deposit and report the results of fluid inclusion and stable oxygen isotope studies. This investigation shows that the Boccheggiano ore consists of an adularia/illite-type epithermal deposit and that sulphide ore deposition was controlled by channelling of hydrothermal fluids of dominantly meteoric origin within the highly anisotropic permeability structure of the Boccheggiano Fault. The low permeability structure of the fault core compartmentalized the fluid outflow preventing substantial cross-fault flow, with focused fluid flow occurring at the hangingwall of the fault controlled by fracture permeability. Fluid inclusion characteristics indicate that ore minerals were deposited between 280° and 350°C in the upper levels of the brittle extending crust (lithostatic pressure in the order of 0.1 GPa). Abundant vapour-rich inclusions in ore-stage quartz are consistent with fluid immiscibility and boiling, and quartz ore vein textures suggest that mineralization in the Boccheggiano ore deposit occurred during cyclic fluid flow in a deformation regime regulated by transient and fluctuating fluid pressure conditions. Results from this study (i) predict a strongly anisotropic permeability structure of the fault damage zone during crustal extension, and (ii) indicate the rate of secondary (structural) permeability creation and maintenance by active deformation in the hangingwall of extensional faults as the major factor leading to effective hydraulic transmissivity in extensional terranes. These features intimately link ore-grade mineralization in extensional settings to telescoping of hydrothermal flow along the hangingwall block(s) of major extensional fault zones.

2020 ◽  
Author(s):  
Neeraj Kumar Sharma ◽  
Tapas Kumar Biswal

<p>Quartz veins are produced from the crystallization of the last silica enriched hydrothermal phase from granitic magma circulating along the pre-existing fracture of rock. In many instances, these hydrothermal fluid act as a carrier for the ore minerals. The intrusion of quartz veins along fractures depends upon the tectonic stress conditions in the area. Fluid pressure (P<sub>f</sub>) of these ascending liquids should be higher than the normal compressive stress (σ<sub>n</sub>) to dilate the fractures. We are studying the quartz vein intrusion in the Cu‒Pb‒Zn mineralization belt of Ambaji, South Delhi terrane, Aravalli- Delhi mobile belt, NW India. The host rocks include mica schist, amphibolite, calc schist, talc tremolite schist, and four phases of granite intrusion (G<sub>0</sub>‒G<sub>3</sub>). The age of G<sub>0</sub>, G<sub>1</sub>, G<sub>2</sub> and G<sub>3</sub> granite are 960, 860, 800, and 750 Ma respectively. The rocks underwent three phases of folding (F<sub>1</sub>‒F<sub>3</sub>) and show greenschist to amphibolite facies metamorphism. The quartz vein intrusion is related to syn to post F<sub>3</sub> folding and G<sub>3</sub> granite magmatism. This final phase hydrothermal fluid extremely altered host rock and formed biotite-tourmaline-quartz and tremolite-actinolite-talc-chlorite greisen along the contact. The greisen host chalcopyrite-pyrite-galena-sphalerite mineralization suggesting the ore minerals were transported by the quartz vein. Vein orientation, stress condition, fluid pressure fluctuation, and fluid temperature can decide the fracture dilation and mineralization processes. Therefore, this work concentrates on the geometrical distribution of the vein orientation data. From this we deduced (i) girdle distribution pattern of vein data  (ii) σ<sub>1</sub> = 120º/75º, σ<sub>2</sub> = 052º/07º, σ<sub>3</sub> = 323º/07º indicate maximum extension was NW-SE and σ<sub>1</sub>σ<sub>2</sub> plane strikes was N52ºE, (iii) θ<sub>2</sub> =12º, θ<sub>3</sub> = 40º  and (iv) R'(driving pressure ratio) = 0.95, ϕ (tectonic stress ratio) = 0.90 indicates high value for R' leading to dilation of wide range of fractures. Further, the high ϕ value suggests uniaxial extension. Microscopic petrography of fluid inclusions shows three generations of inclusion like primary inclusion, secondary inclusion, and pseudosecondary inclusion. Most of the inclusion has aqueous and vapour phase and some inclusions show solid halite phase. We observed different types of trail bound of inclusion like intragranular inclusion, intergranular inclusion and transgranular inclusion, which suggest deformation and recrystallization in the rock. We are studying microthermometry analysis of fluid inclusion present in the quartz vein and trying to estimate the fluid pressure. With the help of fluid pressure, the 3D Mohr circle will be constructed and paleostress will be quantified. That will help in understanding the stress condition and mineralization in the rock.</p><p>Keywords: Veins, Fractures, Paleostress, 3D Mohr Circle, Mineralisation, Fluid Inclusion, Microthermometry</p>


2021 ◽  
Author(s):  
Yan Lavallée ◽  
Takahiro Miwa ◽  
James D. Ashworth ◽  
Paul A. Wallace ◽  
Jackie E. Kendrick ◽  
...  

Abstract. The permeability of magma in shallow volcanic conduits controls the fluid flow and pore pressure development that regulates gas emissions and the style of volcanic eruptions. The architecture of the permeable porous structure is subject to changes as magma deforms and outgasses during ascent. Here, we present a high-resolution study of the permeability distribution across two conduit shear zones (marginal and central) developed in the dacitic spine that extruded towards the closing stages of the 1991–1995 eruption at Unzen volcano, Japan. The marginal shear zone is approximately 3.2 m wide and exhibits a 2-m wide, moderate shear zone with porosity and permeability similar to the conduit core, transitioning into a ~1-m wide, highly-sheared region with relatively low porosity and permeability, and an outer 20-cm wide cataclastic fault zone. The low porosity, highly-sheared rock further exhibits an anisotropic permeability network with slightly higher permeability along the shear plane (parallel to the conduit margin) and is locally overprinted by oblique dilational Riedel fractures. The central shear zone is defined by a 3-m long by ~9-cm wide fracture ending bluntly and bordered by a 15–40 cm wide damage zone with an increased permeability of ~3 orders of magnitude; directional permeability and resultant anisotropy could not be measured from this exposure. We interpret the permeability and porosity of the marginal shear zone to reflect the evolution of compactional (i.e., ductile) shear during ascent up to the point of rupture, estimated by Umakoshi et al. (2008), at ~500 m depth. At this point the compactional shear zone would have been locally overprinted by brittle rupture, promoting the development of a shear fault and dilational Riedel fractures during repeating phases of increased magma ascent rate, enhancing anisotropic permeability that channels fluid flow into, and along, the conduit margin. In contrast, we interpret the central shear zone as a shallow, late-stage dilational structure, which partially tore the spine core with slight displacement. We explore constraints from monitored seismicity and stick-slip behaviour to evaluate the rheological controls, which accompanied the upward shift from compactional toward dilational shear as magma approached the surface, and discuss their importance in controlling the permeability development of magma evolving from overall ductile to increasingly brittle behaviour during ascent and eruption.


2019 ◽  
Author(s):  
Barbara Marchesini ◽  
Paolo Stefano Garofalo ◽  
Luca Menegon ◽  
Jussi Mattila ◽  
Giulio Viola

Abstract. The dynamic evolution of fault zones at the seismogenic brittle-ductile transition zone (BDTZ) expresses the delicate interplay of numerous physical and chemical processes that occur at the time of strain localization. Deformation and flow of aqueous fluids in these zones, in particular, are closely related and mutually dependent during cycles of repeating, transient frictional and viscous deformation. Despite numerous studies documenting in detail seismogenic faults exhumed from the BDTZ, uncertainties remain as to the role of fluids in facilitating deformation in this zone, particularly with regard to the mechanics of broadly coeval brittle and ductile deformation. We combine here structural analysis, fluid inclusion data and mineral chemistry data from synkinematic and authigenic minerals to reconstruct the temporal variations in P, T and bulk composition of the fluids that mediated deformation and steered strain localization in a strike-slip fault from the BDTZ. This is a fault formed within the Paleoproterozoic migmatitic basement of southwestern Finland, hosting in its core two laterally continuous quartz veins formed by two texturally distinct quartz types – Qtz I and Qtz II, where Qtz I is demonstrably older than Qtz II. Veins within the diffuse damage zone of the fault are infilled by Qtz I. Multi-scalar structural analysis indicates recurrent cycles of mutually overprinting brittle and ductile deformation. Fluid inclusion microthermometry and mineral pair geothermometry indicate that both quartz types precipitated from a fluid that was in a homogeneous state during the recurrent cycles of faulting, and whose bulk salinity was in the 0–5 wt % NaCleq range. The temperature of the fluid phase involved with the various episodes of initial strain localization and later reactivation changed with time, from c. 240 °C in the damage zone to c. 350 °C in the core during Qtz I precipitation to < 200 °C at the time of Qtz II crystallization. Fluid pressure estimates show an oscillation in pore pressure comprised between 160 and 10 MPa during the fault activity stages. Our results suggest significant variability in the overall physical conditions during the fault deformation history, possibly reflecting the interaction of several batches of compositionally similar fluids ingressing the dilatant fault zone at different stages of its evolution, each with specific T and P conditions. Initial, fluid-mediated embrittlement of the faulted rock volume generated a diffuse network of joint and/or hybrid/shear fractures in the damage zone, whereas progressive strain localization led to more localized deformation within the fault core. Localization was guided by cyclically increasing fluid pressure and transient embrittlement of a system that was otherwise at overall ductile conditions. Our analysis implies that fluid overpressure at the brittle-ductile transition can play a key role in the initial embrittlment of the metamorphic basement and strain localization mechanisms.


Solid Earth ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 809-838 ◽  
Author(s):  
Barbara Marchesini ◽  
Paolo Stefano Garofalo ◽  
Luca Menegon ◽  
Jussi Mattila ◽  
Giulio Viola

Abstract. The dynamic evolution of fault zones at the seismogenic brittle–ductile transition zone (BDTZ) expresses the delicate interplay between numerous physical and chemical processes. Deformation and fluid flow at the BDTZ are closely related and mutually dependent during repeating and transient cycles of frictional and viscous deformation. Despite numerous studies documenting in detail seismogenic faults exhumed from the BDTZ, uncertainties remain as to the exact role of fluids in facilitating broadly coeval brittle and ductile deformation at that structural level. We combine structural analysis, fluid inclusion, and mineral chemistry data from synkinematic and authigenic minerals to reconstruct the temporal variations in fluid pressure (Pf), temperature (T), and bulk composition (X) of the fluids that mediated deformation and steered strain localization along BFZ300, a strike–slip fault originally active at the BDTZ. BFZ300 deforms the Paleoproterozoic migmatitic basement of southwestern Finland and hosts in its core two laterally continuous quartz veins formed by two texturally distinct types of quartz – Qtz I and Qtz II, with Qtz I older than Qtz II. Veins within the damage zone are formed exclusively by Qtz I. Mesostructural and microstructural analysis combined with fluid compositional data indicate recurrent cycles of mutually overprinting brittle and ductile deformation triggered by oscillations of fluid pressure peaking at 210 MPa. Fluid inclusion microthermometry and mineral pair geothermometry indicate that the two documented quartz types precipitated from different fluid batches, with bulk salinities in the 1 wt % NaCleq–5 wt % NaCleq range for Qtz I and in the 6 wt % NaCleq–11 wt % NaCleq range for Qtz II. The temperature of the fluids involved with initial strain localization and later fault reactivation evolved through time from > 350 ∘C during Qtz I precipitation to < 300 ∘C at the time of Qtz II crystallization. The peak fluid pressure estimates constrain pore pressure oscillations between 80 and 210 MPa during the recorded faulting episodes. Our results suggest variability of the physico-chemical conditions of the fluids steering deformation (Pf, T, X), reflecting the ingress and effects of multiple batches of fluid in the fault zone. Initial fluid-mediated embrittlement generated a diffuse network of joints and/or hybrid–shear fractures in the damage zone; subsequent strain localization led to more localized deformation within the fault core. Localization was guided by cyclically increasing fluid pressure and transient embrittlement of a system that was otherwise under overall ductile conditions. Our analysis suggests that fluid overpressure at the BDTZ can play a key role in the initial embrittlement of the deforming rock and steer subsequent strain localization.


1980 ◽  
Vol 17 (7) ◽  
pp. 823-830 ◽  
Author(s):  
N. C. Higgins

Fluid inclusion evidence from the Grey River Tungsten Prospect, Newfoundland, and other tungsten deposits indicates that CO2 is an important component of the hydrothermal fluid. Carbon dioxide is enriched in fluids evolved from granitic melts under high fluid pressure, while lower pressure fluids are chloride-rich. The association of tungsten deposits with these carbon dioxide rich hydrothermal fluids suggests that carbonate/bicarbonate complexes may be important in tungsten transport at very high fluid pressures.


2021 ◽  
pp. jgs2020-061
Author(s):  
Melina C. B. Esteves ◽  
Frederico M. Faleiros

The western margin of the São Francisco Craton, central Brazil presents a 1300 km long foreland fold–thrust belt where Ediacaran-Cambrian (560–520 Ma) metasedimentary rocks from the Bambuí Group were subsequently deformed during post-collisional stages (520–495 Ma) related to Gondwana assembly. This scenario provides an opportunity to quantify fluid flow regimes and fault-related processes that were active in exhumed foreland fold–thrust zones, which were estimated based on structural, microstructural and fluid inclusion studies of syntectonic veins and host rocks. Kaolinite-bearing synkinematic mineral assemblages from metasedimentary rocks, thermodynamic models and grain-scale deformation accommodated by dissolution–precipitation creep and intracrystalline deformation indicate metamorphic and deformational conditions of 250–270°C. Subhorizontal extensional veins formed under subhorizontal shortening and subvertical extension, supporting vein development under a fold–thrust regime that formed regional NW–SE-trending thrust fault zones and megafolds with NW–SE-trending axes. Orientation and growth microstructures indicate that NW–SE-trending subvertical cleavage-parallel veins formed under subhorizontal NE–SW extension, compatible with those inferred to produce mapped kilometre-scale gentle folds with NE–SW-trending traces. Two primary aqueous fluid inclusion assemblages (FIA) are distinguished by salinity variation: 2–21 wt% NaCleq. in subhorizontal veins and 6–0 wt% NaCleq. in cleavage-parallel subvertical veins. Fluid inclusion thermometry and microstructural analysis suggest that veins crystallized between 250 and 270°C under fluid pressure fluctuating within a range of 50–500 MPa (subhorizontal veins) and 80–320 MPa (cleavage-parallel subvertical veins), evidencing fault-valve behaviour. Trends of coupled decreases in salinity and homogenization temperatures in both FIA indicate downward mixing of meteoric fluids, which was more effective in subvertical veins and was in both cases enhanced by fault-valve behaviour. Dominance of moderate salinity and absence of CO2 and CH4 indicate that the fluids are dominated by formation waters. The salinity signature is similar to those of formation waters and metamorphic fluids derived from rocks of shallow marine environments worldwide.Supplementary material: Details of samples and analytical data are available at https://doi.org/10.6084/m9.figshare.c.5275031


2020 ◽  
Author(s):  
Barbara Marchesini ◽  
Giulio Viola ◽  
Luca Menegon ◽  
Jussi Mattila ◽  
Gunnar Schwarz ◽  
...  

&lt;p&gt;Fluids play a key role in weakening rocks, controlling crustal deformation from early fracture development to mature strain localization, fault nucleation and propagation through cumulative slip. In particular, at the brittle-ductile transition zone crustal deformation and fluid flow are mutually interconnected by repeating cycles of transient frictional and viscous deformation. Uncertainties remain, however, on the details of the micromechanical and chemical influence of fluids in facilitating strain localization processes.&lt;/p&gt;&lt;p&gt;N-S to NW-SE sub-vertical brittle-ductile faults cut across the Paleoproterozoic migmatitic basement of southwestern Finland on the island of Olkiluoto, where the Finnish authorities plan the construction of a deep repository for high-grade nuclear waste. The faults are characterized by a brittle&amp;#8211;ductile to fully brittle deformation style resulting from transient fluid pressurization. We investigated a representative fault by combining field and microstructural observations with fluid inclusion and mineral chemistry analysis on synkinematic and authigenic minerals in order to reconstruct the temporal variations of pressure, temperature, composition and salinity of the synkinematic fluids that controlled strain localization. Combined laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOFMS) and electron back-scattered diffraction analysis (EBSD) were also applied on authigenic sulphides to gain insights into their role upon strain accommodation and deformation-induced elemental transport and distribution at the microscopic scale.&lt;/p&gt;&lt;p&gt;Initial embrittlement of the Olkiluoto basement occurred under a first event of fluid overpressure conditions (&gt; 210 MPa) with formation of a diffuse network of joints and/or hybrid&amp;#8211;shear fractures in a volume that corresponds to the fault damage zone. Subsequent deformation was caused by repeated hydrofracturing induced by fluid pressure up to 210 MPa. Brittle ruptures affected a system that was otherwise under overall ductile conditions, as demonstrated by mutually overprinting veining, cataclasis and plastic deformation.&lt;/p&gt;&lt;p&gt;Later exhumation and cooling of the fault system to fully brittle conditions was aided by reactivation triggered by a distinct fluid ingress at lower pressure (140-180 MPa) and temperature (&amp;#8804; 300&amp;#176; C). Deformation was accommodated at that stage by the interplay of brittle fracturing and low-temperature crystal-plastic in sulphides. Strain and fluid flow created high diffusivity pathways within the pyrite crystal lattices contributing to- and enhancing the net transport of a significant range of heavy elements (e.g. Co, Ni, Cu, Sn, Ag, As, Sb, Pb). These data indicate that the studied fault zone acted as a chemically open system and fault valve.&lt;/p&gt;


2020 ◽  
Author(s):  
Alissar Yehya ◽  
James R. Rice

&lt;p&gt;Micro-cracks in fault damage zones can heal through diffusive mass transfer driven by differences in chemical potential, with rates controlled by temperature and pressure. The diffusion of pore fluid pressure in fault damage zones accelerates mass diffusion and assists healing processes. In this work, we use fluid flow model coupled with heat transfer and crack healing to investigate, through different scenarios, the role of subsurface warm fluid migration, along damage zones, in enhancing healing and re-shaping the fault permeability structure. Our results show that if the flow communication exists between the bed and only one side of the damage zone and not the other side, it leads to an asymmetric permeability structure caused by healing in the side circulated by fluids (ex: Rapolano geothermal area, Italy). Another scenario is when the damage zone adjacent to the fault core is not the interval with the highest permeability, as conventionally expected, which is the case of the Alpine Fault, New Zealand. As shown by our simulations, this can be due to healing by diffusive mass transfer, favored by the localized high geothermal gradients and the upward fluid migration through the fault relay structure.&lt;/p&gt;


2020 ◽  
Author(s):  
Ulrich Kelka ◽  
Thomas Poulet ◽  
Luk Peeters

&lt;p&gt;Fault and fracture networks can govern fluid flow patterns in the subsurface and predicting fluid flow on a regional scale is of interest in a variety of fields like groundwater management, mining engineering, energy, and mineral resources. Especially the pore fluid pressure can have a strong impact on the strength of fault zones and might be one of the drivers for fault reactivation. Reliable simulations of the transient changes in fluid pressure need to account for the generic architecture of fault zones that comprises strong permeability contrast between the fault core and damage zone.&lt;/p&gt;&lt;p&gt;Particularly, the distribution and connectivity of large-scale fault zones can have a strong impact on the flow field. Yet, modelling numerically such features in their full complexity remains challenging. Often faults zones are conceptualized as forming exclusively either barriers or conduits to fluid flow. However, a generic architecture of fault zones often comprises a discrete fault core surrounded by a diffuse damage zone and conceptualizing large scale discontinuities simply as a barrier or conduit is unlikely to capture the regional scale fluid flow dynamics. It is known that if the fault zone is hosted in low-permeability strata, such as clays or crystalline rocks, a transversal flow barrier can form along the fault core whereas the fracture-rich fault damage zone represents a longitudinal conduit. In more permeable host-rocks (i.e. sandstones or carbonates) the reverse situation can occur, and the permeability distributions in the damage zones can be governed by the abundance of low-permeability deformation features. A reliable numerical model needs to account for the difference and strong contrasts in fluid flow properties of the core and the damage zone, both transversally and longitudinally, in order to make prediction about the regional fluid flow pattern.&lt;/p&gt;&lt;p&gt;Here, we present a numerical method that accounts for the generic fault zone architecture as lower dimensional interfaces in conforming meshes during fluid flow simulations in fault networks. With this method we aim to decipher the impact of fault zone architecture on subsurface flow pattern and fluid pressure evolution in fractures and faulted porous media. The method is implemented in a finite element framework for Multiphysics simulations. We demonstrate the impact of considering the more generic geological structure of individual faults on the flow field by conceptualizing discontinuities either as barriers, conduits or as a conduit-barrier system and show were these conceptualizations are applicable in natural systems. We further show that a reliable regional scale fluid flow simulation in faulted porous media needs to account for the generic fault zone architecture. The approach is finally used to evaluate the fluid flow response of statistically parameterised faulted media, in order to investigate the impact and sensitivity of each variable parameter.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document