Fluid flow and syntectonic veining in an Ediacaran-Cambrian foreland fold–thrust zone, western margin of the São Francisco Craton, Brazil

2021 ◽  
pp. jgs2020-061
Author(s):  
Melina C. B. Esteves ◽  
Frederico M. Faleiros

The western margin of the São Francisco Craton, central Brazil presents a 1300 km long foreland fold–thrust belt where Ediacaran-Cambrian (560–520 Ma) metasedimentary rocks from the Bambuí Group were subsequently deformed during post-collisional stages (520–495 Ma) related to Gondwana assembly. This scenario provides an opportunity to quantify fluid flow regimes and fault-related processes that were active in exhumed foreland fold–thrust zones, which were estimated based on structural, microstructural and fluid inclusion studies of syntectonic veins and host rocks. Kaolinite-bearing synkinematic mineral assemblages from metasedimentary rocks, thermodynamic models and grain-scale deformation accommodated by dissolution–precipitation creep and intracrystalline deformation indicate metamorphic and deformational conditions of 250–270°C. Subhorizontal extensional veins formed under subhorizontal shortening and subvertical extension, supporting vein development under a fold–thrust regime that formed regional NW–SE-trending thrust fault zones and megafolds with NW–SE-trending axes. Orientation and growth microstructures indicate that NW–SE-trending subvertical cleavage-parallel veins formed under subhorizontal NE–SW extension, compatible with those inferred to produce mapped kilometre-scale gentle folds with NE–SW-trending traces. Two primary aqueous fluid inclusion assemblages (FIA) are distinguished by salinity variation: 2–21 wt% NaCleq. in subhorizontal veins and 6–0 wt% NaCleq. in cleavage-parallel subvertical veins. Fluid inclusion thermometry and microstructural analysis suggest that veins crystallized between 250 and 270°C under fluid pressure fluctuating within a range of 50–500 MPa (subhorizontal veins) and 80–320 MPa (cleavage-parallel subvertical veins), evidencing fault-valve behaviour. Trends of coupled decreases in salinity and homogenization temperatures in both FIA indicate downward mixing of meteoric fluids, which was more effective in subvertical veins and was in both cases enhanced by fault-valve behaviour. Dominance of moderate salinity and absence of CO2 and CH4 indicate that the fluids are dominated by formation waters. The salinity signature is similar to those of formation waters and metamorphic fluids derived from rocks of shallow marine environments worldwide.Supplementary material: Details of samples and analytical data are available at https://doi.org/10.6084/m9.figshare.c.5275031

2021 ◽  
pp. geochem2020-029
Author(s):  
M. Rabiei ◽  
G. Chi ◽  
E.G. Potter ◽  
V. Tschirhart ◽  
C. MacKay ◽  
...  

The Patterson Lake corridor (PLC) in the southwestern margin of the Athabasca Basin hosts several high-grade uranium deposits. These deposits are located in the basement up to 900 m below the unconformity surface, raising questions about their affiliation with typical unconformity-related uranium (URU) deposits elsewhere in the basin. Based on cross-cutting relationships four pre- and three syn- to post-mineralization quartz generations were identified. Fluid inclusion analyses indicate that pre-mineralization fluids have salinities ranging from 0.2 to 27.2 Wt% NaCl equiv. (avg. 9.0 Wt%), whereas syn-mineralization fluids have salinities ranging from 8.8 to 33.8 Wt% NaCl + CaCl2 (avg. 25.4 Wt%), with NaCl- and CaCl2-rich varieties. The homogenization temperatures (Th) of fluid inclusions from pre-mineralization quartz range from 80 ° to 244 ℃ (avg. 147 ℃), and from syn-mineralization quartz range from 64 ° to 248 ℃ (avg. 128 ℃). Fluid boiling is indicated by the co-development of liquid-dominated and vapor-dominated fluid inclusions within individual fluid inclusion assemblages (FIA) from the syn-mineralization quartz and is related to episodic fluid pressure drops caused by reactivation of basement faults. Our results indicate that composition and P-T conditions of the ore fluids in the PLC are comparable to those of typical URU deposits in the Athabasca Basin, indicating that the uranium deposits in the PLC formed under similar hydrothermal conditions. Episodic reactivation of basement faults was an important driving force to draw uraniferous fluids from the basin and reducing fluids from the basement to the mineralization sites, forming deep basement-hosted deposits.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathwaysSupplementary material:https://doi.org/10.6084/m9.figshare.c.5510179


2021 ◽  
pp. petgeo2020-095
Author(s):  
Michael J. Steventon ◽  
Christopher A-L. Jackson ◽  
Howard D. Johnson ◽  
David M. Hodgson ◽  
Sean Kelly ◽  
...  

The geometry, distribution, and rock properties (i.e. porosity and permeability) of turbidite reservoirs, and the processes associated with turbidity current deposition, are relatively well known. However, less attention has been given to the equivalent properties resulting from laminar sediment gravity-flow deposition, with most research limited to cogenetic turbidite-debrites (i.e. transitional flow deposits) or subsurface studies that focus predominantly on seismic-scale mass-transport deposits (MTDs). Thus, we have a limited understanding of the ability of sub-seismic MTDs to act as hydraulic seals and their effect on hydrocarbon production, and/or carbon storage. We investigate the gap between seismically resolvable and sub-seismic MTDs, and transitional flow deposits on long-term reservoir performance in this analysis of a small (<10 km radius submarine fan system), Late Jurassic, sandstone-rich stacked turbidite reservoir (Magnus Field, northern North Sea). We use core, petrophysical logs, pore fluid pressure, quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN), and 3D seismic-reflection datasets to quantify the type and distribution of sedimentary facies and rock properties. Our analysis is supported by a relatively long (c. 37 years) and well-documented production history. We recognise a range of sediment gravity deposits: (i) thick-/thin- bedded, structureless and structured turbidite sandstone, constituting the primary productive reservoir facies (c. porosity = 22%, permeability = 500 mD), (ii) a range of transitional flow deposits, and (iii) heterogeneous mud-rich sandstones interpreted as debrites (c. porosity = <10%, volume of clay = 35%, up to 18 m thick). Results from this study show that over the production timescale of the Magnus Field, debrites act as barriers, compartmentalising the reservoir into two parts (upper and lower reservoir), and transitional flow deposits act as baffles, impacting sweep efficiency during production. Prediction of the rock properties of laminar and transitional flow deposits, and their effect on reservoir distribution, has important implications for: (i) exploration play concepts, particularly in predicting the seal potential of MTDs, (ii) pore pressure prediction within turbidite reservoirs, and (iii) the impact of transitional flow deposits on reservoir quality and sweep efficiency.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5313860


2021 ◽  
pp. jgs2021-045
Author(s):  
B. Anders ◽  
S. Tyrrell ◽  
D. Chew ◽  
C. Mark ◽  
G. O'Sullivan ◽  
...  

Multiple factors (e.g. source rock composition, climate, nature/scale of sedimentary system) influence the volume and composition of sediment delivered to basins. Fluctuations in these parameters produce cryptic source signals which can vary within the same sedimentary system. Bespoke multi-proxy provenance approaches, targeted at minerals of variable stability, allow for an assessment of natural biasing (recycling) and intra-basinal spatial variations.Provenance of fluvial/deltaic sandstones (Mullaghmore Sandstone Formation) in the NW Carboniferous Basin, Ireland, has been constrained using zircon and apatite U-Pb geochronology, trace elements in apatite and Pb-in-K-feldspar analysis. Zircon U-Pb grain populations are consistent with feldspar data, suggesting Proterozoic basement highs offshore Ireland and Scotland were the main contributor with minor supply from Archean-Palaeoproterozoic rocks of Greenland/NW Scotland and Caledonian-aged rocks. However, apatite data shows a much larger proportion of Caledonian-aged grains of metamorphic origin, suggesting significant sediment was recycled from Neopropterozoic metasedimentary rocks. The spatial variation in provenance indicates that, at onset of clastic input, sediment was being routed to the basin through a complex drainage system, comprising of several discrete hinterland catchments, rather than supply from a single, large interconnected sedimentary system. Such complexities can only be identified with the careful application of a bespoke multi-proxy provenance approach.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5536691


2021 ◽  
pp. petgeo2020-062
Author(s):  
Jingtao Zhang ◽  
Haipeng Zhang ◽  
Donghee Lee ◽  
Sangjin Ryu ◽  
Seunghee Kim

Various energy recovery, storage, conversion, and environmental operations may involve repetitive fluid injection and, thus, cyclic drainage-imbibition processes. We conducted an experimental study for which polydimethylsiloxane (PDMS)-based micromodels were fabricated with three different levels of pore-space heterogeneity (coefficient of variation, where COV = 0, 0.25, and 0.5) to represent consolidated and/or partially consolidated sandstones. A total of ten injection-withdrawal cycles were applied to each micromodel at two different flow rates (0.01 and 0.1 mL/min). The experimental results were analyzed in terms of flow morphology, sweep efficiency, residual saturation, the connection of fluids, and the pressure gradient. The pattern of the invasion and displacement of nonwetting fluid converged more readily in the homogeneous model (COV = 0) as the repetitive drainage-imbibition process continued. The overall sweep efficiency converged between 0.4 and 0.6 at all tested flow rates, regardless of different flow rates and COV in this study. In contrast, the effective sweep efficiency was observed to increase with higher COV at the lower flow rate, while that trend became the opposite at the higher flow rate. Similarly, the residual saturation of the nonwetting fluid was largest at COV = 0 for the lower flow rate, but it was the opposite for the higher flow rate case. However, the Minkowski functionals for the boundary length and connectedness of the nonwetting fluid remained quite constant during repetitive fluid flow. Implications of the study results for porous media-compressed air energy storage (PM-CAES) are discussed as a complementary analysis at the end of this manuscript.Supplementary material: Figures S1 and S2 https://doi.org/10.6084/m9.figshare.c.5276814.Thematic collection: This article is part of the Energy Geoscience Series collection available at: https://www.lyellcollection.org/cc/energy-geoscience-series


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-109
Author(s):  
Paulo Castellan ◽  
Gustavo Viegas ◽  
Frederico M. Faleiros

Fabrics of the East Pernambuco shear zone (EPSZ) were studied via microstructural analysis, mineral chemistry and isochemical phase diagram modelling to constrain the pressure and temperature conditions of deformation during shearing. Granitic mylonites show fractured feldspar porphyroclasts embedded in a fine-grained, recrystallized quartzo-feldspathic matrix. These mylonites grade laterally into banded ultramylonites characterized by stretched feldspar clasts alternated with recrystallized quartz bands. Fractures in these ultramylonites are filled by phyllosilicates. The mineral chemistry of the feldspars points to systematic changes between porphyroclasts, grains within fractures and fine-grained mixtures. Quartz crystallographic fabrics in the mylonites suggest activation of prism slip, while the ultramylonites show the activation of both rhomb and basal slip systems. Thermodynamic modelling suggests that the mylonites were formed at 4.75 ± 0.25 kbar and 526 ± 9°C, while the ultramylonites yield conditions of 5.9 ± 1 kbar and 437 ± 17°C. These observations suggest that the EPSZ records a heterogeneous path of strain accommodation, marked by decreasing temperature from its western sector to its eastern termination. The differences in metamorphic conditions are consistent with a transitional, brittle–ductile strain regime. Such characteristics indicate that the EPSZ is a Neoproterozoic shear belt nucleated and heterogeneously exhumed at the brittle–ductile transition, possibly in an intracontinental setting.Supplementary Material: EPMA analysis of feldspars in Caruaru and Gravatá domains and T-X(O2) pseudosections are available at https://doi.org/10.6084/m9.figshare.c.5125957


2021 ◽  
pp. SP516-2021-38
Author(s):  
Martin Smith ◽  
David Banks ◽  
Santanu Ray ◽  
Francis Bowers

AbstractThe Nalunaq deposit, Greenland, is a hypozonal, shear zone-hosted, Au deposit. The shear zone has previously been interpreted to have undergone 4 stages of deformation, accompanied by fluid flow,and vein formation. Coupled with previous trapping T estimates, fluid inclusion data are consistent with trapping of fluids with salinities between 28-45 wt. % NaCl eq., from 300-475°C during D2 and D3, with pressure varying between ∼800 and 100Mpa. The range reflects pressure cycling during seismic slip related depressurisation events. D4 fluids were lower salinity and trapped from 200-300°C, at ∼50-200Mpa during late stage normal faulting. The variation in major element chemistry is consistent with ingress of hypersaline, granitoid equilibrated fluids into the shear zone system and mixing with fluids that had reacted with the host metamorphic rocks. D4 stage fluids represent ingress of meteoric fluids into the system. Gold contents in inclusion fluids range from ∼300-10mg/kg. These data are consistent with the high P-T solubility of Au as AuHS(H2S)30 complexes, and Au deposition by decompression and cooling. The high salinities also suggest Au transport as chloride complexes may have been possible. Gold distribution was modified by the release of chemically bound or nanoscale Au during sulphide oxidation at the D4 stage.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5635812


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-022
Author(s):  
B.M. Spencer ◽  
J.R. Thigpen ◽  
R.D. Law ◽  
C.A. Mako ◽  
C.S. McDonald ◽  
...  

New 40Ar/39Ar thermochronological and deformation temperature analyses in the Scandian (c. 435–420 Ma) orogenic retrowedge of northern Scotland demonstrate accelerated cooling during late syn- to post-orogenic exhumation of the high-grade orogenic core. Initial cooling rates of 10–30°C myr−1 immediately following peak orogenesis transitioned to rapid rates of 45–90°C myr−1 during final exhumation of the Naver thrust sheet in the orogenic core. The flanking ductile thrust sheets exhibit a similar, albeit less pronounced, acceleration of cooling, with rates increasing by c. 150–300% following peak orogenesis. Closer to the foreland, the Moine thrust sheet did not experience increased cooling rates. Calculated unroofing rates of 3.75 mm a−1 in the high-grade Naver thrust sheet suggest increasing, rapid exhumation in the orogenic core during a presumed collapse phase of orogenesis. This is contrary to the expectation of decreasing erosional efficiency as topography is diminished and is interpreted to suggest that unroofing of the Scottish Caledonides may have been partially enhanced by upper crustal extensional deformation during ductile flow of the infrastructure of the orogenic core. Similar processes have been interpreted in the East Greenland Caledonides, which form the northern extension of the Scandian retrowedge.Supplementary material:40Ar/39Ar analytical data for muscovite (Supplementary Data Table 1), 40Ar/39Ar analytical data for amphibole (Supplementary Data Table 2), and electron microprobe analytical data for amphibole samples (Supplementary Data Table 3) is available at: https://doi.org/10.6084/m9.figshare.c.5087057


2020 ◽  
Vol 177 (5) ◽  
pp. 1092-1106 ◽  
Author(s):  
Loraine Pastoriza Primaleon ◽  
Kenneth J.W. McCaffrey ◽  
Robert E. Holdsworth

The characterization of fracture networks using attribute and topological analyses has not been widely applied to the understanding and prediction of the secondary porosity, permeability and fluid flow characteristics of geothermal resources. We acquired fracture length, aperture, intensity and topological data from remotely sensed images and surface exposures of the Cuernos de Negros region and compared these data with well cores and thin sections from the underlying active geothermal reservoir: the Southern Negros Geothermal Field, west central Philippines. We show that the fracture attributes of the analogue and reservoir are best described by a power law distribution of fracture length and aperture intensity across six to eight orders of magnitude. This characterization of outcrop and borehole fractures validates the use of surface exposures as analogues for the Southern Negros Geothermal Field reservoir rocks at depth. An observed change in the scaling exponent in the 100–500 m length scale suggests that regional to sub-regional fracture systems scale differently from those at the meso- and macroscale, which may be a strata-bound effect or a sampling issue. Topological analyses show a dominance of Y-nodes and doubly connected branches, that indicates a high degree of fracture connectivity, which is important for effective fluid flow.Supplementary Material: Slopes, coefficient of determination and Aikake information criterion values of the cumulative frequency v. length and aperture plots of all fracture transects are available at https://doi.org/10.6084/m9.figshare.c.4960559Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


2011 ◽  
Vol 48 (10) ◽  
pp. 1425-1445 ◽  
Author(s):  
Julie A. Hunt ◽  
Tim Baker ◽  
James Cleverley ◽  
Garry J. Davidson ◽  
Anthony E. Fallick ◽  
...  

Iron oxide – Cu ± Au ± U ± Co (IOCG) mineralization is associated with numerous Proterozoic breccia bodies, collectively known as Wernecke Breccia, in Yukon Territory, Canada. Multiphase breccia zones occur in areas underlain by Paleoproterozoic Wernecke Supergroup metasedimentary rocks and are associated with widespread sodic, potassic, and carbonate alteration assemblages. Fluid inclusion data indicate syn-breccia fluids were hot (185–350 °C) saline (24–42 wt.% NaCl equivalent) NaCl–CaCl2–H2O brines. Estimates of fluid pressure vary from 0.4 to 2.4 kbar (1 kbar = 100 MPa). Carbon and oxygen isotopic compositions of breccia-related carbonates range from ~–11‰ to +1.5‰ (Pee Dee belemnite (PDB)) and –2‰ to 20‰ (Vienna standard mean ocean water (V-SMOW); δ18Owater ~–8‰ to +15‰), respectively. δ13C and δ18O values for host Wernecke Supergroup limestone/dolostone vary from ~–2‰ to 1.6‰ and 12‰ to 25‰, respectively. Sulfur isotopic compositions of hydrothermal sulfides and sulfate vary from ~–12‰ to +13‰ and +8‰ to +17‰ (Cañon Diablo Troilite (CDT)), respectively. Syn-breccia biotite, muscovite, and actinolite have δD and δ18O values of ~–141‰ to –18‰ and +7‰ to +12‰ (V-SMOW; δ18Owater ~7‰ to 11‰), respectively. The Wernecke Breccias and the associated IOCG mineralization appear to have formed from largely nonmagmatic fluids — based on isotopic, fluid inclusion, and geological data. The emerging hypothesis is that periodic overpressuring of dominantly formational/metamorphic water led to repeated brecciation and mineral precipitation. The weight of overlying sedimentary rocks led to elevated fluid temperatures and pressures; fluid flow may have been driven by tectonics and (or) gravity with metals scavenged from host strata.


2021 ◽  
pp. jgs2021-079
Author(s):  
Xin Qian ◽  
Shen Ma ◽  
Xianghong Lu ◽  
Sainan Wu ◽  
Mongkol Udchachon ◽  
...  

Volcanic rocks in the Chanthaburi zone are rarely reported and important for investigating the tectonic evolution of Paleotethyan Ocean in SE Thailand. Four rhyolitic samples from the Ko Chang Island yield zircon ages of 254–258 Ma, confirming the presence of Late Permian volcanic rocks in SE Thailand. These rocks consist of Group 1 rhyolites and Group 2 rhyolitic ignimbrites and have high K2O contents of 4.92–7.10 wt.% and A/CNK values of 1.10–1.69. They are enriched in LREEs, Rb, Th, U, Zr and Y, and show negative anomalies of Ba, Sr, Nb, Ta and Ti with obvious Eu anomalies. Their whole-rock εNd (t) values range from −1.7 to −3.1. Zircon in-situ εHf (t) and δ18O values range from 0.0 to +5.6 and 8.2‰ to 9.6‰, respectively. They belong to peraluminous, ultrapotassic A-type rhyolites, and were derived from partial melting of a mixed source of Mesoproterozoic metasedimentary rocks with a component of juvenile mafic crust. These ultrapotassic rhyolites formed in a continental rift setting in response to the rollback of subducted Paleotethyan oceanic slab beneath the Indochina Block. Combining previous geological observations, we propose that there are some sporadically distributed continental rift basins along the Eastern Paleotethyan domain during the Permian.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5635390


Sign in / Sign up

Export Citation Format

Share Document