The tectonic evolution of the Bogda region from Late Carboniferous to Triassic time: evidence from detrital zircon U–Pb geochronology and sandstone petrography

2017 ◽  
Vol 155 (5) ◽  
pp. 1063-1088 ◽  
Author(s):  
JIALIN WANG ◽  
CHAODONG WU ◽  
ZHUANG LI ◽  
WEN ZHU ◽  
TIANQI ZHOU ◽  
...  

AbstractField-based mapping, sandstone petrology, palaeocurrent measurements and zircon cathodoluminescence images, as well as detrital zircon U–Pb geochronology were integrated to investigate the provenance of the Upper Carboniferous – Upper Triassic sedimentary rocks from the northern Bogda Mountains, and further to constrain their tectonic evolution. Variations in sandstone composition suggest that the Upper Carboniferous – Lower Triassic sediments displayed less sedimentary recycling than the Middle–Upper Triassic sediments. U–Pb isotopic dating using the LA-ICP-MS method on zircons from 12 sandstones exhibited similar zircon U–Pb age distribution patterns with major age groups at 360–320 Ma and 320–300 Ma, and with some grains giving ages of > 541 Ma, 541–360 Ma, 300–250 Ma and 250–200 Ma. Coupled with the compiled palaeocurrent data, the predominant sources were the Late Carboniferous volcanic rocks of the North Tianshan and Palaeozoic magmatic rocks of the Yili–Central Tianshan. There was also input from the Bogda Mountains in Middle–Late Triassic time. The comprehensive geological evidence indicates that the Upper Carboniferous – Lower Permian strata were probably deposited in an extensional context which was related to a rift or post-collision rather than arc-related setting. Conspicuously, the large range of U–Pb ages of the detrital zircons, increased sedimentary lithic fragments, fluvial deposits and contemporaneous Triassic zircon ages argue for a Middle–Late Triassic orogenic movement, which was considered to be the initial uplift of the Bogda Mountains.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jialin Wang ◽  
Chaodong Wu ◽  
Yue Jiao ◽  
Bo Yuan

AbstractDue to the unknown Triassic volcanism in the Junggar Basin, the Middle–Late Triassic sedimentary provenance in the southern Junggar Basin (SJB) has long been controversial. Detrital zircon grains from 13 samples of the Middle–Upper Triassic Xiaoquangou Group in the SJB were analyzed using zircon U–Pb geochronology to constrain the provenance of Triassic sedimentary rocks and to further understand their source-to-sink system. Comparison of detrital zircon U–Pb age distributions for 13 samples reveals that the Triassic age populations predominate in sediments of the northern Bogda Mountains, with subordinate in the southern Bogda Mountains, and no or minimal in the North Tianshan (NTS). Coupled with sandstone petrological, sedimentary geochemical and paleocurrent data, the Triassic detrital zircon grains of the Xiaoquangou Group in the SJB were probably input from the Bogda Mountains. As Pennsylvanian and Mississippian zircon grains are mainly derived from the NTS and Central Tianshan (CTS), the provenance of the Xiaoquangou Group includes the NTS, CTS and Bogda Mountains. But the different samples in different sink areas have different provenances, originating from at least four source-to-sink systems. The supply of sediments from the Bogda Mountains started in the Late Triassic, suggesting initial uplift of the Bogda Mountains.


2021 ◽  
Author(s):  
Jialin Wang ◽  
Chaodong Wu ◽  
Yue Jiao ◽  
Bo Yuan

Abstract Provenance analysis for volcanism without field evidence remains a major challenge. Detrital zircon grains from 13 samples of the Middle–Upper Triassic Xiaoquangou Group in the Southern Junggar Basin (SJB) were analyzed using U–Pb geochronology to constrain the location and characteristics of Triassic volcanism in the area as well as to understand its tectonic implications. A comparison of the distribution of detrital zircon U–Pb ages reveals Triassic zircon ages predominate in northern Bogda Mountains, with subordinate contributions also in southern Bogda Mountains, and no or minimal input in North Tianshan piedmont. The geochronology data combined with the euhedral and angular zircon grains suggest that the Triassic zircons probably originate from Bogda Mountains. A comparative provenance analysis reveals varied sources for Xiaoquangou Group in the SJB, with sediments of the Bogda Mountains area derived mainly from North Tianshan, Central Tianshan, and Bogda Mountains. The supply of sediments from Bogda Mountains started in the Late Triassic, and is indicative of the initial uplift of Bogda Mountains. This study proves the effectiveness of the comparison of detrital zircon U–Pb age distributions for inferring source characteristics and is applicable in similar situations, particularly when the source area is poorly preserved.


2020 ◽  
Author(s):  
Remziye Akdoğan ◽  
Xiumian Hu ◽  
Aral I. Okay ◽  
Gültekin Topuz

<p>The Istanbul Zone (NW Turkey) is regarded as the eastward elongation of Avalonia in Central Europe. Its Paleozoic stratigraphy is characterized by continuous sedimentation from Early Ordovician to Late Carboniferous. However, the Intra-Pontide Suture between the Istanbul and Sakarya zones is regarded as a Neotethyan Suture representing an oceanic domain of Permo-Triassic to Cretaceous age. Here, we present U-Pb ages and Lu-Hf isotopic compositions of the detrital zircons from the Upper Silurian-Lower Devonian, Upper Carboniferous, Permian and Upper Triassic sandstones of the Istanbul Zone. Detrital zircon ages from the Upper Silurian-Lower Devonian sandstone are dominated by Mesoproterozoic zircons (1950-900 Ma), with subordinate peaks at the latest Neoproterozoic to Silurian and Mid-Archean (2850-2750 Ma) confirming its Avalonian affinity. Detrital zircons from Carboniferous to Triassic sandstones yielded a major peak at Carboniferous-Early Permian (360-270 Ma) and a minor peak at Late Neoproterozoic-Cambrian (700-480 Ma) while Mesoproterozoic zircons become insignificant. The εHf (t) values of the detrital zircon grains from Upper Silurian-Lower Devonian, Upper Carboniferous, and Upper Triassic sandstones exhibit a wide range from -21.3 to +11.7, and over 62% of zircon grains have negative values, suggesting mixing derivation of both mantle and crustal melts. Apart from the Permo-Triassic magmatism, the Istanbul Zone is devoid of Carboniferous igneous and metamorphic events. Therefore, abundant Carboniferous zircons and disappearance of the Mesoproterozoic zircons in the Carboniferous to Upper Triassic clastic rocks of the  Istanbul Zone require juxtaposition with a continental domain similar to the Sakarya and Rhodope‐Strandja zones, which are characterized by widespread Carboniferous magmatism. We suggest that the Intra-Pontide Suture probably represents trace of the Rheic Suture in Turkey, along which Avalonia and Armorica collided during Early Carboniferous.</p><p><strong>Key words:</strong> Intra-Pontide Suture, Istanbul Zone, Rheic Suture, detrital zircon, U-Pb ages, provenance, Hf isotopes</p>


Author(s):  
Luca Zurli ◽  
Gianluca Cornamusini ◽  
Jusun Woo ◽  
Giovanni Pio Liberato ◽  
Seunghee Han ◽  
...  

The Lower Permian tillites of the Beacon Supergroup, cropping out in Victoria Land (Antarctica), record climatic history during one of the Earth’s coldest periods: the Late Paleozoic Ice Age. Reconstruction of ice-extent and paleo-flow directions, as well as geochronological and petrographic data, are poorly constrained in this sector of Gondwana. Here, we provide the first detrital zircon U-Pb age analyses of both the Metschel Tillite in southern Victoria Land and some tillites correlatable with the Lanterman Formation in northern Victoria Land to identify the source regions of these glaciogenic deposits. Six-hundred detrital zircon grains from four diamictite samples were analyzed using laser ablation−inductively coupled plasma−mass spectrometry. Geochronological and petrographic compositional data of the Metschel Tillite indicate a widespread reworking of older Devonian Beacon Supergroup sedimentary strata, with minor contribution from Cambro-Ordovician granitoids and meta-sedimentary units as well as Neoproterozoic metamorphic rocks. Euhedral to subhedral Carboniferous−Devonian zircon grains match coeval magmatic units of northern Victoria Land and Marie Byrd Land. This implies, in accordance with published paleo-ice directions, a provenance from the east-southeast sectors. In contrast, the two samples from northern Victoria Land tillite reflect the local basement provenance; their geochronological age and petrographic composition indicates a restricted catchment area with multiple ice centers. This shows that numerous ice centers were present in southern Gondwana during the Late Paleozoic Ice Age. While northern Victoria Land hosted discrete glaciers closely linked with the northern Victoria Land-Tasmania ice cap, the west-northwestward flowing southern Victoria Land ice cap contributed most of the sediments comprising the Metschel Tillite.


2020 ◽  
Vol 123 (3) ◽  
pp. 331-342
Author(s):  
T. Andersen ◽  
M.A. Elburg ◽  
J. Lehmann

Abstract Detrital zircon grains from three samples of sandstone from the Tswaane Formation of the Okwa Group of Botswana have been dated by U-Pb and analysed for Hf isotopes by multicollector LA-ICPMS. The detrital zircon age distribution pattern of the detrital zircons is dominated by a mid-Palaeoproterozoic age fraction (2 000 to 2 150 Ma) with minor late Archaean – early Palaeoproterozoic fractions. The 2 000 to 2 150 Ma zircon grains show a range of epsilon Hf from -12 to 0. The observed age and Hf isotope distributions overlap closely with those of sandstones of the Palaeoproterozoic Waterberg Group and Keis Supergroup of South Africa, but are very different from Neoproterozoic deposits in the region, and from the Takatswaane siltstone of the Okwa Group, all of which are dominated by detrital zircon grains younger than 1 950 Ma. The detrital zircon data indicate that the sources of Tswaane Formation sandstones were either Palaeoproterozoic rocks in the basement of the Kaapvaal Craton, or recycled Palaeoproterozoic sedimentary rocks similar to the Waterberg, Elim or Olifantshoek groups of South Africa. This implies a significant shift in provenance regime between the deposition of the Takatswaane and Tswaane formations. However, the detrital zircon data are also compatible with a completely different scenario in which the Tswaane Formation consists of Palaeoproterozoic sedimentary rock in tectonic rather than depositional contact with the other units of the Okwa Group.


2019 ◽  
Author(s):  
George Gehrels ◽  
Dominique Giesler ◽  
Paul Olsen ◽  
Dennis Kent ◽  
Adam Marsh ◽  
...  

Abstract. U-Pb geochronology was conducted by Laser Ablation-Inductively Couple Plasma Mass Spectrometry (LA-ICPMS) on detrital zircon grains from twenty-nine samples from the Coconino Sandstone, Moenkopi Formation, and Chinle Formation. These samples were recovered from ∼520 m of drill core that was acquired during the Colorado Plateau Coring Project (CPCP), located in Petrified Forest National Park (Arizona). A sample from the lower Permian Coconino Sandstone yields a broad distribution of Proterozoic and Paleozoic ages that are consistent with derivation from the Appalachian and Ouachita orogens, with little input from local basement or Ancestral Rocky Mountain sources. Four samples from the Holbrook Member of the Moenkopi Formation yield a different set of Precambrian and Paleozoic age groups, indicating derivation from the Ouachita orogen, the East Mexico Arc, and the Permo-Triassic arc built along the Cordilleran margin. Twenty-three samples from the Chinle Formation contain variable proportions of Proterozoic and Paleozoic zircon grains, but are dominated by Late Triassic grains. LA-ICPMS ages of these grains belong to five main groups that correspond to the Mesa Redondo Member, Blue Mesa Member and lower part of the Sonsela Member, upper part of the Sonsela Member, middle part of the Petrified Forest Member, and upper part of the Petrified Forest Member. The ages of pre-Triassic grains also correspond to these chronostratigraphic units, and are interpreted to reflect varying contributions from the Appalachian orogen to the east, Ouachita orogen to the southeast, Precambrian basement exposed in the Ancestral Mogollon Highlands to the south, East Mexico arc, and Permian-Triassic arc built along the southern Cordilleran margin. Triassic grains in each chronostratigraphic unit also have distinct U and Th concentrations, which are interpreted to reflect temporal changes in the chemistry of arc magmatism. Comparison of our LA-ICPMS ages with available CA-TIMS ages and new magnetostratigraphic data provides new insights into the depositional history of the Chinle Formation, as well as methods utilized to determine depositional ages of fluvial strata. For parts of the Chinle Formation that are dominated by fine-grained clastic strata (e.g. mudstone and siltstone), such as the Blue Mesa Member and Petrified Forest Member, all three chronometers agree (to within ∼1 m.y.), and robust depositional chronologies have been determined. In contrast, for stratigraphic intervals dominated by coarse-grained clastic strata (e.g., sandstone), such as most of the Sonsela Member, the three chronologic records disagree due to recycling of older zircon grains and variable dilution of syn-depositional-age grains. This results in LA-ICPMS ages that significantly pre-date deposition, and CA-TIMS ages that range between the other two chronometers. These complications challenge attempts to establish a well-defined chronostratigraphic age model for the Chinle Formation, and to evaluate possible connections among fundamental Late Triassic biotic and climatic changes, a red siliceous horizon encountered in the CPCP core, and the ∼215.5 Ma Manicouagan impact.


2021 ◽  
Author(s):  
Robert G. Lee ◽  
Alain Plouffe ◽  
Travis Ferbey ◽  
Craig J.R. Hart ◽  
Pete Hollings ◽  
...  

Abstract The detrital zircons in tills overlying the Guichon Creek batholith, British Columbia, Canada, have trace element concentrations and ages similar to those of zircons from the bedrock samples from which they are interpreted to have been sourced. Rocks from the core of the batholith that host porphyry copper mineralization have distinct zircon compositions relative to the distal, barren margin. We analyzed 296 zircons separated from 12 subglacial till samples to obtain U-Pb ages and trace element compositions. Laser ablation U-Pb ages of the detrital zircons overlap within error with chemical abrasion-thermal ionization mass spectrometry U-Pb ages of the Late Triassic Guichon Creek batholith and confirm that the detrital zircons are likely derived from the batholith. The youngest intrusions of the batholith produced the Highland Valley Copper porphyry deposits and contain distinctive zircons with elevated Eu/EuN* >0.4 attributed to high magmatic water contents and oxidation states, indicating higher porphyry copper potential. Zircon from till samples adjacent to and 9 km down-ice from the mineralized centers have mean Eu/EuN* >0.4, which are indicative of potential porphyry copper mineralization. Detrital zircon grains from more distal up- and down-ice locations (10–15 km) have zircon Eu/EuN* mean values of 0.26 to 0.37, reflecting background values. We conclude that detrital zircon compositions in glacial sediments transported several kilometers can be used to establish the regional potential for porphyry copper mineralization.


2021 ◽  
Vol 62 (3) ◽  
pp. 1-12
Author(s):  

To constrain the paleo - positions of the South China Cratons in the Rodinia Supercontinent during the Neoproterozoic, the in - situ U - Pb dating, and Hf isotope analysis of the detrital zircon from the Nam Co Complex, Song Ma Suture zone, northwestern Vietnam was performed. The U - Pb isotopic dating on detrital zircons shows that the Nam Co Complex demonstrates the major population (>50%) of around ~850 Ma while the minor population is scattered between ~1.2÷3.0 Ga. The Neoproterozoic age spectrum exhibits a large range of the εHf(t) from strongly negative to positive values ( - 17.418022÷ 14.600527), indicating that the source of the magma for this age range has been not only derived from reworking of the Archean basement rocks, but also generated from the juvenile material. The U - Pb age distribution patterns and Hf isotopic data of the detrital zircon in the Nam Co Complex are compatible with those of the South China Craton rather than those of the Indochina Craton. The data also indicate that sedimentary protoliths of the Nam Co Complex were deposited in a convergent - related basin along the southwestern margin of the South China Craton during the Neoproterozoic. Combined with the similarities of the detrital zircon age between western Cathaysia, Indochina, East Antarctica and East India, it is proved that the South China Craton was situated at the margin of the Rodinia Supercontinent and in close proximity to the Indochina, East Antarctica and East India.


Sign in / Sign up

Export Citation Format

Share Document