scholarly journals The stratigraphy of the Neogene-Quaternary succession in the southwest Netherlands from the Schelphoek borehole (42G4-11/42G0022) – a sequence-stratigraphic approach

2007 ◽  
Vol 86 (4) ◽  
pp. 317-332 ◽  
Author(s):  
A.A. Slupik ◽  
F.P. Wesselingh ◽  
A.C. Janse ◽  
J.W.F. Reumer

AbstractWe investigate the stratigraphy of Neogene and Quaternary intervals of the Schelphoek borehole (Schouwen, Zeeland, the Netherlands). The Breda Formation (Miocene-Zanclean) contains three sequences separated by hiatuses. The Oosterhout Formation (Zanclean-Piacenzian) contains at least two sequences. This formation is overlain by seven sequences of the Gelasian Maassluis Formation that almost certainly represent glacial cycles. The three lowermost sequences are provisionally assigned to the Praetiglian (MIS 96, MIS 98 and MIS 100). A large hiatus exists between the top of the Maassluis Formation and the base of the late Middle to Late Quaternary succession. Due to extensivein situreworking of older strata (including fossils) at the base of several of the formations, their exact boundaries are difficult to establish. The Neogene succession in the Schelphoek borehole is compared to the stratigraphic successions in the Antwerp area to the south and the Dutch coastal area and continental platform to the north. Finally, the stratigraphic context of the Gelasian (‘Tiglian’) mammal fauna dredged from the bottom of a major tidal channel in the adjacent Oosterschelde is assessed by comparison with the Schelphoek borehole.

2003 ◽  
Vol 1 ◽  
pp. 217-230 ◽  
Author(s):  
G.F. Waldemar Herngreen ◽  
Wim F.P. Kouwe ◽  
Theo E. Wong

A recent revision of the lithostratigraphy of the Netherlands has triggered an extensive re-evaluation of existing ideas on the Jurassic structural and depositional history. Significant advances can be attributed to the incorporation of sequence stratigraphic concepts. In the course of the Triassic and Jurassic, structural complexity increased progressively. The Jurassic sedimentary succession can be subdivided into three depositional megasequences. Megasequence I (Rhaetian– Aalenian) reflects the period between the so-called early and mid-Cimmerian tectonic phases. Megasequence II (Aalenian – Middle Callovian) covers the period of activity of the mid-Cimmerian phase. Megasequence III (Middle Callovian – Ryazanian) corresponds with the period between the mid-Cimmerian and late Cimmerian phases (particularly after pulse II). In this latter megasequence, six stages (IIIa–f) are recognised. Sediments deposited during the Rhaetian and Ryazanian bear a stronger affinity with the Jurassic succession than with Triassic and Cretaceous sediments respectively. These stages are thus treated here as an integral part of the Jurassic succession. During the Rhaetian–Bajocian the area subsided relatively uniformly. A sheet of predominantly fine-grained marine sediments of great lateral uniformity was deposited. During the Toarcian, in particular, basin circulation was largely restricted. The cooling that followed the thermal Central North Sea dome uplift triggered an important extensional phase during the Aalenian–Callovian. The rift phase resulted in the formation of several smaller basins, each with its own characteristic depositional succession. The basins fall into three structural provinces: the eastern province (Lower Saxony Basin, E–W-striking); the northern province (Central Graben, N–S-striking); and the southern–central system (Roer Valley Graben – Broad Fourteens, with a strong NW–SE strike). The mid-Cimmerian event started to affect the Dutch basins during the Bajocian. Sedimentation ceased in the Dutch Central Graben while it persisted in a predominantly coarse-grained, shallow marine facies in the southern basins (Roer Valley Graben, West Netherlands Basin). Extensional tectonics in the Central Graben were initiated during the Middle Callovian, with the deposition of continental sediments. During the Oxfordian–Kimmeridgian, marine incursions gradually became more frequent. Marine deposition in the other basins in the south persisted into the Oxfordian, at which time deposition became predominantly continental. Marine conditions gradually returned in the south during the Ryazanian–Barremian, with a series of advancing partial transgressions from the north. The present- day distribution of Jurassic strata in the Netherlands was determined largely by erosion associated with Late Cretaceous – Paleocene uplift.


Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


Antiquity ◽  
1995 ◽  
Vol 69 (265) ◽  
pp. 818-830 ◽  
Author(s):  
Geoff Hope ◽  
Jack Golson

At the south and north limits of our region are mountainous areas very different from the open arid spaces of the Australian continent between. In the north, the high country of New Guinea offers a complex and well-studied environmental sequence as the arena for early and puzzling human adaptations, precursor of the extraordinary societies of the island today.


Author(s):  
E. Wyllys Andrews V ◽  
George J. Bey ◽  
Christopher M. Gunn
Keyword(s):  

This chapter examines the evidence for pre-Mamom pottery in the northern Maya lowlands. This pottery, recognized as the Ek complex, has been identified at Komchen and Kiuic as well as several other sites in the western part of northern Yucatan. The identification, description, and comparison of this pottery with contemporary complexes from the southern Maya lowlands establishes Ek pottery as the oldest ceramic complex (900-800 B.C.) recovered in the north. Northern Maya culture is thought to be the result of a process of in situ evolution which begins at roughly the same time it happened in the south.


Author(s):  
Robin D. Pingree ◽  
Carlos Garcia-Soto ◽  
Bablu Sinha

The position and structure of the North Atlantic Subtropical Front is studied using Lagrangian flow tracks and remote sensing (AVHRR imagery: TOPEX/POSEIDON altimetry: SeaWiFS) in a broad region (∼31° to ∼36°N) of marked gradient of dynamic height (Azores Current) that extends from the Mid-Atlantic Ridge (MAR), near ∼40°W, to the Eastern Boundary (∼10°W). Drogued Argos buoy and ALACE tracks are superposed on infrared satellite images in the Subtropical Front region. Cold (cyclonic) structures, called ‘Storms’, and warm (anticyclonic) structures of 100–300 km in size can be found on the south side of the Subtropical Front outcrop, which has a temperature contrast of about 1°C that can be followed for ∼2500 km near 35°N. Warmer water adjacent to the outcrop is flowing eastward (Azores Current) but some warm water is returned westward about 300 km to the south (southern Counterflow). Estimates of horizontal diffusion in a Storm (D=2.2×102 m2 s−1) and in the Subtropical Front region near 200 m depth (Dx=1.3×104 m2 s−1, Dy=2.6×103 m2 s−1) are made from the Lagrangian tracks. Altimeter and in situ measurements show that Storms track westwards. Storms are separated by about 510 km and move westward at 2.7 km d−1. Remote sensing reveals that some initial structures start evolving as far east as 23°W but are more organized near 29°W and therefore Storms are about 1 year old when they reach the MAR (having travelled a distance of 1000 km). Structure and seasonality in SeaWiFS data in the region is examined.


2016 ◽  
Vol 61 (2) ◽  
pp. 223-250 ◽  
Author(s):  
Peter van Dam

AbstractDecolonization challenged people across the globe to define their place in a new postcolonial order. This challenge was felt in international political and economic affairs, but it also affected daily lives across the globe. The history of fair trade activism as seen from the Netherlands highlights how citizens in the North grappled to position themselves in a postcolonial consumer society. Interventions by fair trade activists connected debates about the morals of their society to the consequences of decolonization. They reacted to the imbalances of the global market in the wake of decolonization, joining critics from the South in demanding more equitable global relations. It was around this issue of “fair trade” that a transnational coalition of moderate and more radical activists emerged after the 1960s. This coalition held widely dissimilar views regarding the politics of the left and the use of consumer activism. The analysis of their interventions demonstrates that during the postwar era attempts at transforming the global market were inextricably interwoven with visions of a postcolonial order.


2020 ◽  
Author(s):  
Hugo Moors ◽  
Miroslav Honty ◽  
Carla Smolders ◽  
Ann Provoost ◽  
Mieke De Craen ◽  
...  

<p>The geological extreme Dallol region, located around the Dallol volcano in the north-east of Danakil depression (Ethiopia), is considered as one of the harshest and hottest places on Earth. The geology is made up of years and years of evaporates accumulation. Volcanic activity generates ascending brines that may cross and mix with aquifers from inflowing meteoric water originating from the Ethiopian highlands on the east of the Danakil depression. When these mixtures reach the surface they can generate hydrothermal springs giving rise to waterbodies in the form of small ponds or lakes. During the Europlanet 2018 Danakil field expedition, ten of these saline waterbodies were extensively studied by <em>in situ</em> measurements and <em>ex situ</em> geo–physico-chemical and –microbiological analyses of collected samples, liquids as well as sediments.</p><p>The <em>in situ</em> physico-chemical measurements clearly indicated the extreme nature of all ten investigated lakes. Laboratory analyses of the collected batch samples of liquids and sediments confirmed the extreme character of the waterbodies and complements our geological survey of the region with valuable geo–chemical and –microbiological data.</p><p>Based on our analytical results, the relative small Dallol region can still be subdivided into three geological smaller areas: the outcrop zone, the volcanic base region and the distant south area. The outcrop zone is dominated by sodium, iron and potassium. Oxidation processes in the outflowing superheated ferrous and sulfidic rich brine give rise to some of the most acidic ponds on our planet. In the ponds and lakes of the volcanic base region, incredible high amounts of calcium and/or magnesium can remain in their dissolved form as the most dominant and quasi only available anion is chloride. This region is host for the most saline water body on Earth. Chemical analysis of the lakes of the distant south area show that sodium is by far the most dominant cation. It is therefore no surprise that the large Karum Lake in the south region is economically exploited for the mining of sodium chloride.</p><p>Our mineralogy analyses render results that are completely in line with the observed geochemistry of the waterbodies. Halite and sylvite are the most present minerals in the Dallol outcrop zone associated with some gypsum and in one case with anhydrite. The geology around the waterbodies of volcanic base zone are a little bit more divers. On the shores of the Gaet’ale Pond tachyhydrite, chloromagnesite, halite and sylvite is determined, while the Black Lake is surrounded by bischofite and carnalite. Logically, the mineralogy of the south area, the salt mining area, is dominated by halite and sylvite.</p><p>Apparently, the geochemistry of the outcrop zone and volcanic base region is so harsh that no extremophilic organism is able to survive in these areas. Only in the distant south area did we find indications of the presence of halophiles. Besides the bacterial genus <em>Salinibacter</em>, our 16S rDNA microbiological fingerprinting indicates the presence of halophilic archaea like:  <em>Halobaculum sp., Halobellus sp., Halomicroarcula sp., Halorientalis sp.</em> with the majority of the population being <em>Candidatus Nanosalina sp</em>.</p>


2001 ◽  
Vol 56 (3) ◽  
pp. 308-321 ◽  
Author(s):  
Colm Ó Cofaigh ◽  
Julian A. Dowdeswell ◽  
Carol J. Pudsey

AbstractSediment cores from the continental rise west of the Antarctic Peninsula and the northern Weddell and Scotia Seas were investigated for their ice-rafted debris (IRD) content by lithofacies logging and counting of particles >0.2 cm from core x-radiographs. The objective of the study was to determine if there are iceberg-rafted units similar to the Heinrich layers of the North Atlantic that might record periodic, widespread catastrophic collapse of basins within the Antarctic Ice Sheet during the Quaternary. Cores from the Antarctic Peninsula margin contain prominent IRD-rich units, with maximum IRD concentrations in oxygen isotope stages 1, 5, and 7. However, the greater concentration of IRD in interglacial stages is the result of low sedimentation rates and current winnowing, rather than regional-scale episodes of increased iceberg rafting. This is also supported by markedly lower mass accumulation rates (MAR) during interglacial periods versus glacial periods. Furthermore, thinner IRD layers within isotope stages 2–4 and 6 cannot be correlated between individual cores along the margin. This implies that the ice sheet over the Antarctic Peninsula did not undergo widespread catastrophic collapse along its western margin during the late Quaternary (isotope stages 1–7). Sediment cores from the Weddell and Scotia Seas are characterized by low IRD concentrations throughout, and the IRD signal generally appears to be of limited regional significance with few strong peaks that can be correlated between cores. Tentatively, this argues against pervasive, rapid ice-sheet collapse around the Weddell embayment over the last few glacial cycles.


Core V19-301 (south of Cape Verde Islands) has been analysed in detail for (i) size distribution of quartz grains, (ii) mineralogy, (iii) colour and organic carbon (iv) G. menardii foraminifera, and (v) total foraminifera and carbonate. These results are compared with those previously obtained on core V23-100 (north of Cape Verde Islands). It is believed that the carbonate variations can be used to establish simultaneity between the cores, and thus the following climatic data emerge: ( a ) During glacial stages the trade winds were more vigorous than normal for the region north of the Cape Verdes; but the wintertime Harmattan was weaker than normal for the region south of the Cape Verdes. ( b ) The land to the north of Dakar remained desert, and was especially arid during glacials, whereas to the south of Dakar conditions oscillated between desert during interglacials, and savannah during glacials, ( c ) These wind and rainfall oscillations were more rapid and less excursive at around 0.7 Ma than they were in later glacial cycles.


Sign in / Sign up

Export Citation Format

Share Document