scholarly journals The Jurassic of the Netherlands

2003 ◽  
Vol 1 ◽  
pp. 217-230 ◽  
Author(s):  
G.F. Waldemar Herngreen ◽  
Wim F.P. Kouwe ◽  
Theo E. Wong

A recent revision of the lithostratigraphy of the Netherlands has triggered an extensive re-evaluation of existing ideas on the Jurassic structural and depositional history. Significant advances can be attributed to the incorporation of sequence stratigraphic concepts. In the course of the Triassic and Jurassic, structural complexity increased progressively. The Jurassic sedimentary succession can be subdivided into three depositional megasequences. Megasequence I (Rhaetian– Aalenian) reflects the period between the so-called early and mid-Cimmerian tectonic phases. Megasequence II (Aalenian – Middle Callovian) covers the period of activity of the mid-Cimmerian phase. Megasequence III (Middle Callovian – Ryazanian) corresponds with the period between the mid-Cimmerian and late Cimmerian phases (particularly after pulse II). In this latter megasequence, six stages (IIIa–f) are recognised. Sediments deposited during the Rhaetian and Ryazanian bear a stronger affinity with the Jurassic succession than with Triassic and Cretaceous sediments respectively. These stages are thus treated here as an integral part of the Jurassic succession. During the Rhaetian–Bajocian the area subsided relatively uniformly. A sheet of predominantly fine-grained marine sediments of great lateral uniformity was deposited. During the Toarcian, in particular, basin circulation was largely restricted. The cooling that followed the thermal Central North Sea dome uplift triggered an important extensional phase during the Aalenian–Callovian. The rift phase resulted in the formation of several smaller basins, each with its own characteristic depositional succession. The basins fall into three structural provinces: the eastern province (Lower Saxony Basin, E–W-striking); the northern province (Central Graben, N–S-striking); and the southern–central system (Roer Valley Graben – Broad Fourteens, with a strong NW–SE strike). The mid-Cimmerian event started to affect the Dutch basins during the Bajocian. Sedimentation ceased in the Dutch Central Graben while it persisted in a predominantly coarse-grained, shallow marine facies in the southern basins (Roer Valley Graben, West Netherlands Basin). Extensional tectonics in the Central Graben were initiated during the Middle Callovian, with the deposition of continental sediments. During the Oxfordian–Kimmeridgian, marine incursions gradually became more frequent. Marine deposition in the other basins in the south persisted into the Oxfordian, at which time deposition became predominantly continental. Marine conditions gradually returned in the south during the Ryazanian–Barremian, with a series of advancing partial transgressions from the north. The present- day distribution of Jurassic strata in the Netherlands was determined largely by erosion associated with Late Cretaceous – Paleocene uplift.

2007 ◽  
Vol 86 (4) ◽  
pp. 317-332 ◽  
Author(s):  
A.A. Slupik ◽  
F.P. Wesselingh ◽  
A.C. Janse ◽  
J.W.F. Reumer

AbstractWe investigate the stratigraphy of Neogene and Quaternary intervals of the Schelphoek borehole (Schouwen, Zeeland, the Netherlands). The Breda Formation (Miocene-Zanclean) contains three sequences separated by hiatuses. The Oosterhout Formation (Zanclean-Piacenzian) contains at least two sequences. This formation is overlain by seven sequences of the Gelasian Maassluis Formation that almost certainly represent glacial cycles. The three lowermost sequences are provisionally assigned to the Praetiglian (MIS 96, MIS 98 and MIS 100). A large hiatus exists between the top of the Maassluis Formation and the base of the late Middle to Late Quaternary succession. Due to extensivein situreworking of older strata (including fossils) at the base of several of the formations, their exact boundaries are difficult to establish. The Neogene succession in the Schelphoek borehole is compared to the stratigraphic successions in the Antwerp area to the south and the Dutch coastal area and continental platform to the north. Finally, the stratigraphic context of the Gelasian (‘Tiglian’) mammal fauna dredged from the bottom of a major tidal channel in the adjacent Oosterschelde is assessed by comparison with the Schelphoek borehole.


Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 77-102 ◽  
Author(s):  
Mahbub Hussain ◽  
Lameed O. Babalola ◽  
Mustafa M. Hariri

ABSTRACT The Wajid Sandstone (Ordovician-Permian) as exposed along the road-cut sections of the Abha and Khamis Mushayt areas in southwestern Saudi Arabia, is a mediun to coarse-grained, mineralogically mature quartz arenite with an average quartz content of over 95%. Monocrystalline quartz is the dominant framework grain followed by polycrystalline quartz, feldspar and micas. The non-opaque heavy mineral assemblage of the sandstone is dominated by zircon, tourmaline and rutile (ZTR). Additional heavy minerals, constituting a very minor fraction of the heavies, include epidote, hornblende, and kyanite. Statistical analysis showed significant correlations between zircon, tourmaline, rutile, epidote and hornblende. Principal component R-mode varimax factor analysis of the heavy mineral distribution data shows two strong associations: (1) tourmaline, zircon, rutile, and (2) epidote and hornblende suggesting several likely provenances including igneous, recycled sedimentary and metamorphic rocks. However, an abundance of the ZTR minerals favors a recycled sedimentary source over other possibilities. Mineralogical maturity coupled with characteristic heavy mineral associations, consistent north-directed paleoflow evidence, and the tectonic evolutionary history of the region indicate a provenance south of the study area. The most likely provenances of the lower part (Dibsiyah and Khusayyan members) of the Wajid Sandstone are the Neoproterozoic Afif, Abas, Al-Bayda, Al-Mahfid, and Al-Mukalla terranes, and older recycled sediments of the infra-Cambrian Ghabar Group in Yemen to the south. Because Neoproterozic (650-542 Ma) rocks are not widespread in Somalia, Eritrea and Ethiopia, a significant source further to the south is not likely. The dominance of the ultrastable minerals zircon, tourmaline and rutile and apparent absence of metastable, labile minerals in the heavy mineral suite preclude the exposed arc-derived oceanic terrains of the Arabian Shield in the west and north as a significant contributor of the sandstone. An abundance of finer-grained siliciclastic sequences of the same age in the north, is consistent with a northerly transport direction and the existence of a deeper basin (Tabuk Basin?) to the north. The tectonic and depositional model presented in this paper differs from the existing model that envisages sediment transportation and gradual basin filling from west to east during the Paleozoic.


2016 ◽  
Vol 61 (2) ◽  
pp. 223-250 ◽  
Author(s):  
Peter van Dam

AbstractDecolonization challenged people across the globe to define their place in a new postcolonial order. This challenge was felt in international political and economic affairs, but it also affected daily lives across the globe. The history of fair trade activism as seen from the Netherlands highlights how citizens in the North grappled to position themselves in a postcolonial consumer society. Interventions by fair trade activists connected debates about the morals of their society to the consequences of decolonization. They reacted to the imbalances of the global market in the wake of decolonization, joining critics from the South in demanding more equitable global relations. It was around this issue of “fair trade” that a transnational coalition of moderate and more radical activists emerged after the 1960s. This coalition held widely dissimilar views regarding the politics of the left and the use of consumer activism. The analysis of their interventions demonstrates that during the postwar era attempts at transforming the global market were inextricably interwoven with visions of a postcolonial order.


2004 ◽  
Vol 5 ◽  
pp. 99-112 ◽  
Author(s):  
Stefan Piasecki ◽  
John H. Callomon ◽  
Lars Stemmerik

The Jurassic of Store Koldewey comprises a Middle Jurassic succession towards the south and an Upper Jurassic succession towards the north. Both successions onlap crystalline basement and coarse sediments dominate. Three main lithostratigraphical units are recognised: the Pelion Formation, including the Spath Plateau Member, the Payer Dal Formation and the Bernbjerg Formation. Rich marine macrofaunas include Boreal ammonites and the successions are dated as Late Bathonian – Early Callovian and Late Oxfordian – Early Kimmeridgian on the basis of new collections combined with material in earlier collections. Fine-grained horizons and units have been analysed for dinoflagellate cysts and the stratigraphy of the diverse and well-preserved flora has been integrated with the Boreal ammonite stratigraphy. The dinoflagellate floras correlate with contemporaneous floras from Milne Land, Jameson Land and Hold with Hope farther to the south in East Greenland, and with Peary Land in North Greenland and Svalbard towards the north. The Middle Jurassic flora shows local variations in East Greenland whereas the Upper Jurassic flora gradually changes northwards in East Greenland. A Boreal flora occurs in Peary Land and Svalbard. The characteristic and stratigraphically important species Perisseiasphaeridium pannosum and Oligosphaeridium patulum have their northernmost occurrence on Store Koldewey, whereas Taeniophora iunctispina and Adnatosphaeridium sp. extend as far north as Peary Land. Assemblages of dinoflagellate cysts are used to characterise significant regional flooding events and extensive sequence stratigraphic units.


1998 ◽  
Vol 4 (4) ◽  
pp. 45-49
Author(s):  
Edward L. Ayers
Keyword(s):  

1915 ◽  
Vol 2 (12) ◽  
pp. 554-565
Author(s):  
C. S. Du Riche Preller

The range of the Apuan Alps, commonly called the Carrara Mountains, is an offshoot of the Apennines, trending N.N.W. to S.S.E., parallel to the Mediterranean littoral, from which it rises within a distance of barely four miles to a maximum height of 6,000 feet above sea-level. Exclusive of the outer belt of the more recent strata, the Triassic formation, within which the saccharoidal marble beds are situated, covers about 25 by 13 kilometres or about 130 square miles, of which the marble zone proper represents 64 square miles or about half. The range is bounded on the north by the Aullela valley in the Lunigiana district; on the east by the Serchio valley in the Garfagnana district; and on the south by the Serchio valley in the Province of Lucca. The marble district, whose western part faces the Mediterranean, comprises the three divisions of Carrara, Massa, and the Versilia in the corresponding parallel valleys of the Carrione, Frigido, and Serravezza Rivers. The Versilia division, which forms part of the Province of Lucca, is composed of the Seravezza, Stazzema, and Arni subdivisions, of which the last-named lies on the eastern watershed of the Apuan range. The Versilia division also includes Pietrasanta, Camajore, Massarosa, and the wellknown watering-place of Viareggio, near the last-named of which are situated extensive subaqueous deposits of a peculiarly coarse-grained, sharp macigno sand. These deposits, formed as a delta in a lacustrine expanse by the River Serchio, constitute an important and indispensable adjunct of the marble industry as grinding material for the numerous marble saw-mills in the three parallel valleys already referred to.


2018 ◽  
Vol 10 (3) ◽  
pp. 79
Author(s):  
Eric Clausen

The Beaver Creek drainage basin is located along the North Dakota-Montana border slightly to the south of a recognized continental ice sheet margin and immediately to the east of the deep northeast-oriented Yellowstone River valley with Beaver Creek flowing in a north and northeast direction to join the north-oriented Little Missouri River. The Beaver Creek drainage basin originates on an escarpment-surrounded upland and its erosional history was determined by analyzing detailed topographic maps aided by previously made field observations that showed coarse-grained and distinctive alluvium had been transported in an east direction across the Beaver Creek drainage basin and across what is now the deep Little Missouri River valley to sediments making up southwest North Dakota high points containing both the distinctive alluvium and Oligocene age fossils. Drainage divides surrounding the Beaver Creek drainage basin show numerous divide crossings (or notches) linking northwest-oriented Yellowstone River tributary valleys with east-oriented Beaver Creek tributary valleys and west- or northwest-oriented Beaver Creek tributary valleys with southeast- or east-oriented Little Missouri River tributary valleys and suggest the Beaver Creek valley eroded headward across a large-scale flood formed anastomosing channel complex. Buttes located just to the east of the Beaver Creek-Little Missouri River drainage divide suggest the east-oriented water removed as much as 150 meters, or more, of Beaver Creek drainage basin bedrock, and even greater amounts of bedrock from regions to the south of the Beaver Creek drainage basin. Topographic map evidence and routes traveled by the distinctive alluvium suggest a continental ice sheet blocked a large and high-level northeast-oriented river and diverted at least some of the water along the ice sheet margin with the east-oriented floodwaters being captured in a progressive sequence by headward erosion of the Little Missouri River, Beaver Creek, and Yellowstone River valleys (in that order).


1999 ◽  
Vol 13 ◽  
pp. 105-129 ◽  
Author(s):  
Renée van Bezooijen ◽  
Johannes Ytsma

Abstract. This experimental study deals with the perception of regionally colored accents of Standard Dutch (from Groningen, Friesland, Limburg, Zuid-Holland, and West-Flanders) as compared to 'pure' Standard Dutch. Three different aspects were investigated: speech-based personality impression, perceived linguistic divergence, and geographic identifiability. Listeners originated from different parts of the Netherlands. As for personality impression, speakers of 'pure' Standard Dutch were perceived to be significantly more dominant (arrogant, self-assured, and active) than accented speakers from Groningen, Friesland, Limburg, and West-Flanders, and they received significantly higher ratings on the integrity dimension (reliable, fair, and education) than accented speakers from Limburg. No other significant differences (e.g. related to social attractiveness) were found. With respect to linguistic divergence, the speakers from the south (Limburg and West-Flanders) were perceived to have significantly stronger and more homogeneous accents than the speakers from the north (Groningen and Friesland) and the west (Zuid-Holland). Finally, the geographic origin of the speakers from Limburg appeared to be the easiest to identify and that of the speakers from West-Flanders and Groningen the most difficult.


2012 ◽  
Vol 91 (3) ◽  
pp. 325-339 ◽  
Author(s):  
M. van der Vegt ◽  
P. Hoekstra

AbstractIn this article we study the morphodynamics of the Slufter on the short-term (months) and long-term (years to decades). The Slufter is a small, shallow tidal inlet located on the island of Texel, the Netherlands. A narrow (tens of meters) channel connects the North Sea with a dune valley of 400 ha. This narrow channel is located in between a 400-700 m wide opening in the dunes. Approximately 80% of the basin of the Slufter is located above mean high water level and is flooded only during storms, when a threshold water level is exceeded.Analysis of historical aerial photographs revealed that the inlet channel migrates about 100 m per year. In the 1970's it migrated to the south, while since 1980 it is migrating to the north. When the channel reached the dunes at the north side of the dune breach the channel was relocated to the south by man. The channel inside the backbarrier basin was less dynamic. It shows a gradual growth and southward migration of a meander on a decadal time scale.The short-term dynamics of the Slufter were studied during a field campaign in 2008. The campaign aimed at identifying the dominant hydrodynamic processes and morphological change during fair weather conditions and during storm events. During fair weather flow velocities in the main inlet channel were 0.5-0.8 m/s at water depths of 0-1.5 m, slightly ebb-dominant and associated morphological change was small. When water levels were above critical levels during a storm period the hydrodynamics in the main channel drastically changed. The flow in the main channel was highly ebb dominant. Long ebb periods with typical flow velocities of 2 m/s were alternated by much shorter flood periods with typical velocities of 0.5-1 m/s. This resulted in a net outflow of water via the main channel, while we measured a net inflow of water at the beach plain. During the storm period in 2008 we measured a 10 m migration of the channel to the north.We conclude that the Slufter is a storm-dominated tidal inlet system.


Sign in / Sign up

Export Citation Format

Share Document