scholarly journals Preliminary geologic, geomorphologic and geophysical studies for the paleoseismological analysis of the Amer fault (NE Spain)

2001 ◽  
Vol 80 (3-4) ◽  
pp. 243-253 ◽  
Author(s):  
J. Fleta ◽  
P. Santanach ◽  
X. Goula ◽  
P. Martínez ◽  
B. Grellet ◽  
...  

AbstractThe Amer fault is a 30 km long normal fault, which generated the damaging earthquakes of March and May 1427. Triangular facets, wine glass drainage basins, alluvial fans and scarps along the Amer fault mountain front provide evidence of its recent activity. Topographic profiling, electrical logging, tomographic and high-resolution seismic profiling along the northern segment of the Amer fault showed the following: i) no evidence of surface deformation in recent deposits; ii) fault scarps produced by the Amer fault located only on old alluvial fans, probably Pleistocene in age, and iii) Amer fault related deformation reaching upper Quaternary levels, but not the uppermost horizons. The high sedimentation rate (nearly one order of magnitude greater than the fault slip rate) due to the filling of the lake, which resulted from the damming of the Fluvià river by the Bosc de Tosca lava flow (17,000 yr BP), can account for the absence of surface deformation on Holocene sediments.

2005 ◽  
Vol 408 (1-4) ◽  
pp. 147-176 ◽  
Author(s):  
Ioannis D. Papanikolaou ◽  
Gerald P. Roberts ◽  
Alessandro M. Michetti

2021 ◽  
Author(s):  
Paolo Boncio ◽  
Eugenio Auciello ◽  
Vincenzo Amato ◽  
Pietro Aucelli ◽  
Paola Petrosino ◽  
...  

Abstract. We studied in detail the Gioia Sannitica active normal fault (GF) along the Southern Matese Fault system in the southern Apennines of Italy. The current activity of the fault system and its potential to produce strong earthquakes have been underestimated so far, and are now defined. Precise mapping of the GF fault trace on a 1 : 20,000 geological map and several point data on geometry, kinematics and throw rate are made available in electronic format. The GF, and in general the entire fault system along the southern Matese mountain front, is made of slowly-slipping faults, with a long active history revealed by the large geologic offsets, mature geomorphology, and complex fault pattern and kinematics. Present activity has resulted in Late Quaternary fault scarps resurrecting the foot of the mountain front, and Holocene surface faulting. The slip rate varies along-strike, with maximum Late Pleistocene – Holocene throw rate of ~0.5 mm/yr. Activation of the 11.5 km-long GF can produce up to M 6.1 earthquakes. If activated together with the 18 km-long Ailano-Piedimonte Matese fault (APMF), the seismogenic potential would be M 6.8. The slip history of the two faults is compatible with a contemporaneous rupture. The observed Holocene displacements on the GF and APMF are compatible with activations during some poorly known historical earthquakes, such as the 1293 (M 5.8), 1349 (M 6.8; southern prolongation of the rupture on the Aquae Iuliae fault?) and CE 346 earthquakes. A fault rupture during the 847 poorly-constrained historical earthquake is also compatible with the dated displacements.


2011 ◽  
Vol 62 (4) ◽  
pp. 381-393 ◽  
Author(s):  
Rastislav Vojtko ◽  
Juraj Beták ◽  
Jozef Hók ◽  
František Marko ◽  
Vojtech Gajdoš ◽  
...  

Pliocene to Quaternary tectonics in the Horná Nitra Depression (Western Carpathians)The Horná Nitra Depression is an Upper Miocene-Quaternary intramontane sedimentary basin. This N-S elongated half-graben structure is rimmed from the west by the marginal Malá Magura fault which is the most distinctive fault in the Horná Nitra Depression, traditionally considered as an active fault during the neotectonic phase. This dislocation is attended by contrasting landforms and their parameters. The lowS-indexof about 1.10, at least two generations of well-preserved faceted slopes along this fault, and longitudinal river valley profiles point to the presence of a low-destructed actual mountain front line, which is typical for the Quaternary active fault systems. Comparison with known normal fault slip rates in the world makes it possible to set an approximate vertical slip rate between 0.3-1.1 m · kyr-1. The present-day fault activity is considered to be normal, steeply dipping towards the east according to structural and geophysical data. The NNW-SSE present-day tectonic maximum horizontal compressional stressSHand perpendicular minimum horizontal compressional stressShwas estimated in the Horná Nitra region. The Quaternary activity of the Malá Magura fault is characterized by irregular movement. Two stages of important tectonic activity along the fault were distinguished. The first stage was dated to the Early Pleistocene. The second stage of tectonic activity can by dated to the Late Pleistocene and Holocene. The Malá Magura fault is permeable for gases because the soil atmosphere above the ca. 150 meters wide fault zone contains increased contents of methane and radon.


2020 ◽  
Vol 222 (3) ◽  
pp. 2136-2146
Author(s):  
M Mathey ◽  
A Walpersdorf ◽  
C Sue ◽  
S Baize ◽  
A Deprez

SUMMARY Due to the steady moderate seismicity observed along the Briançon seismic arc, in the south-western French Alps, three temporary GNSS (Global Navigation Satellite System) surveys took place in 1996, 2006 and 2011, across a ∼50 × 60 km² wide area, to investigate the surface deformation field. The horizontal velocity field computed from these three surveys showed an east–west extension in the network. A fourth campaign was led in 2016, creating a 20 yr observation span, resulting in measurements which reach a sufficient accuracy to assess whether extension found within the Briançon network is localized onto any particular tectonic feature. Several faults in this area are known to be active normal faults. Assessing the localization of the deformation may lead to a better understanding of the active tectonics of the Alpine belt. To address this issue, a robust velocity field was computed from the combination of the different campaign and permanent GNSS data. Strain rate tensors were derived for the first time in this area on a 0.1 × 0.1 deg grid to assess the distribution of the deformation. The regional deformation appears localized in the Briançon area and reaches up to 20 ± 5 nanostrain yr−1 in the centre of the network. The observed velocities were projected on a profile across the network and compared with modelled interseismic deformation to characterize the behaviour of the major active faults known in the study zone. While a two-fault model provides the best fit to the data, a single fault model has only marginally higher residuals, with parameters which are more consistent with the seismotectonics of the region. The localization of the single modelled fault is consistent with the location of the High Durance Fault (HDF). Therefore, we used the known geological location of this structure as a priori information in a block model to compute a fault slip rate at the interface between the two blocks. The velocities on the interface indicate 0.4–0.5 mm yr−1 of extension, and therefore strain accumulates along the HDF throughout the seismic cycle. The geodetically derived fault slip rate is converted into an equivalent seismic moment release rate, which is consistent within its uncertainty bounds with the known historical and instrumental seismicity of the Briançon area.


1981 ◽  
Vol 71 (6) ◽  
pp. 1933-1942
Author(s):  
F. Steve Schilt ◽  
Robert E. Reilinger

Abstract Relative vertical displacements of bench marks in extreme western Kentucky have been determined by comparison of successive leveling surveys in 1947 and 1968. The resulting pattern of apparent surface deformation shows steep offset which can be closely modeled by a normal fault buried in an elastic half-space. The offset is located near the northern boundary of the Mississippi Embayment and the New Madrid seismic zone, an area where faults have previously been inferred on the basis of both geological and geophysical evidence. If the apparent movement is due to slip along a fault, several lines of evidence (regional structure, earthquake data, and lineations) suggest that the postulated fault trends NNE. Thirteen earthquakes were recorded in this area between the times of leveling; focal mechanisms exist for three of these. The nearest of these three focal mechanisms to the leveling offset implies normal faulting. The magnitude of the earthquake, however, appears to be too small to account for the amount of slip required by the fault model. Thus the apparent deformation may have accumulated with several undetected small earthquakes, or gradually as aseismic creep.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2014 ◽  
Vol 56 (6) ◽  
Author(s):  
Nadine Hoffmann

<p><span style="font-family: CMR10; font-size: medium;">The study area at the Lake Ohrid Basin is located on 693 m a.s.l. at the south-western border of the Former Yugoslavian Republic of Macedonia with Albania. It is a suitable location for neotectonic studies. It exhibits a large variety of morphological expressions associated with the seismic activity of the region. Linear bedrock fault scarps give the relief on both sides of the lake a staircase-like appearance; other features are wine-glass shaped valleys and triangular facets. These often short living features are used to identify active faults and to parameterise palaeoearthquakes (slip rates, subsidence and erosion). According to the results of fault scarp profiling a halfgraben shape of the basin is proposed with the west coast being dominated by mass wasting processes most likely triggered by seismic events.</span></p>


Author(s):  
Reinhard Wolff ◽  
Ralf Hetzel ◽  
István Dunkl ◽  
Aneta A. Anczkiewicz

AbstractThe Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease westwards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Brenner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and conduction is crucial for interpreting cooling ages from extensional fault systems.


Sign in / Sign up

Export Citation Format

Share Document