Toxic Excreta of Plants

1912 ◽  
Vol 4 (3) ◽  
pp. 245-247 ◽  
Author(s):  
F. Fletcher

The writer has pointed out the influence that some agricultural plants have on others when grown in close proximity to them. It was demonstrated (inter alia) that a row of Sesamum indicum (gingelly), when sown at a distance of two feet from a row of Sorghum vulgare (great millet), will not mature, the plants dying after reaching a height of a few centimetres. These experiments were made at Surat (India) on black cotton soil of a very retentive nature; this character of the soil combined with a rainfall of 42 inches per annum all falling in 3½ months, doubtless emphasized the deleterious effect of the sorghum on the sesamum since the washing of the soil was a minimum.

1940 ◽  
Vol 30 (4) ◽  
pp. 639-653 ◽  
Author(s):  
G. Nagelschmidt ◽  
A. D. Desai ◽  
Alex. Muir

The mineral compositions of the clays from a red earth and a black cotton soil from Hyderabad, Deccan State, India, occurring in close proximity in the field are determined. Both soils are derived from the same or from very similar parent rocks, a coarsely crystalline granite or gneiss.For both soils there is practically no variation in the mineralogical composition of the clay throughout the profile, but for any given clay there is some variation with grain size. The main contrast between the two is that the red clay contains predominantly kaolinite or halloysite, whereas the black clay contains mainly beidellite, a member of the montmorillonite group. The topography appears to be the principal factor associated with this difference in minerals, and the processes of weathering believed to have produced the contrasted clays are discussed with reference to experiments on the leaching of felspar in the laboratory and on hydrothermal synthesis.


Author(s):  
A.A. Mogîlda ◽  

Induced mutagenesis is considered an effective and potential method for generating genetic variation in agricultural plants. The paper presents data on the influence of this physical factor on the quantitative parameters in the M2 generation of sesame samples from Zaltsadovski, Kadet, Adaptovanii 2 at a dose of 200, 300, 400 and 500 Gy (Gray). According to the results obtained, the variability of some features was revealed, which varied depending on the sample and the applied radiation dose. The greatest changes in indicators compared to control were found in the genotypes Kadet at a dose of 300 Gy and Adaptovanii (200 Gy). The spectrum of morphobiological changes in plants will also be assessed in the M3 generation.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Shrawan Singhal ◽  
Michelle A. Grigas ◽  
S. V. Sreenivasan

In spite of the great progress made toward addressing the challenge of particle contamination in nanomanufacturing, its deleterious effect on yield is still not negligible. This is particularly true for nanofabrication processes that involve close proximity or contact between two or more surfaces. One such process is Jet-and-Flash Imprint Lithography (J-FIL™), which involves the formation of a nanoscale liquid film between a patterned template and a substrate. In this process, the presence of any frontside particle taller than the liquid film thickness, which is typically sub-25 nm, can not only disrupt the continuity of this liquid film but also damage the expensive template upon contact. The detection of these particles has typically relied on the use of subwavelength optical techniques such as scatterometry that can suffer from low throughput for nanoscale particles. In this paper, a novel mechanics-based method has been proposed as an alternative to these techniques. It can provide a nearly 1000 × amplification of the particle size, thereby allowing for optical microscopy based detection. This technique has been supported by an experimentally validated multiphysics model which also allows for estimation of the loss in yield and potential contact-related template damage because of the particle encounter. Also, finer inspection of template damage needs to be carried out over a much smaller area, thereby increasing throughput of the overall process. This technique also has the potential for inline integration, thereby circumventing the need for separate tooling for subwavelength optical inspection of substrates.


Author(s):  
John L. Beggs ◽  
John D. Waggener ◽  
Wanda Miller

Microtubules (MT) are versatile organelles participating in a wide variety of biological activity. MT involvement in the movement and transport of cytoplasmic components has been well documented. In the course of our study on trauma-induced vasogenic edema in the spinal cord we have concluded that endothelial vesicles contribute to the edema process. Using horseradish peroxidase as a vascular tracer, labeled endothelial vesicles were present in all situations expected if a vesicular transport mechanism was in operation. Frequently,labeled vesicles coalesced to form channels that appeared to traverse the endothelium. The presence of MT in close proximity to labeled vesicles sugg ested that MT may play a role in vesicular activity.


Author(s):  
Oliver C. Wells ◽  
Mark E. Welland

Scanning tunneling microscopes (STM) exist in two versions. In both of these, a pointed metal tip is scanned in close proximity to the specimen surface by means of three piezos. The distance of the tip from the sample is controlled by a feedback system to give a constant tunneling current between the tip and the sample. In the low-end STM, the system has a mechanical stability and a noise level to give a vertical resolution of between 0.1 nm and 1.0 nm. The atomic resolution STM can show individual atoms on the surface of the specimen.A low-end STM has been put into the specimen chamber of a scanning electron microscope (SEM). The first objective was to investigate technological problems such as surface profiling. The second objective was for exploratory studies. This second objective has already been achieved by showing that the STM can be used to study trapping sites in SiO2.


Author(s):  
R.H.M. Cross ◽  
C.E.J. Botha ◽  
A.K. Cowan ◽  
B.J. Hartley

Senescence is an ordered degenerative process leading to death of individual cells, organs and organisms. The detection of a conditional lethal mutant (achloroplastic) of Hordeum vulgare has enabled us to investigate ultrastructural changes occurring in leaf tissue during foliar senescence.Examination of the tonoplast structure in six and 14 day-old mutant tissue revealed a progressive degeneration and disappearance of the membrane, apparently starting by day six in the vicinity of the mitochondria associated with the degenerating proplastid (Fig. 1.) where neither of the plastid membrane leaflets is evident (arrows, Fig. 1.). At this stage there was evidence that the mitochondrial membranes were undergoing retrogressive changes, coupled with disorganization of cristae (Fig. 2.). Proplastids (P) lack definitive prolamellar bodies. The cytoplasmic matrix is largely agranular, with few endoplasmic reticulum (ER) cisternae or polyribosomal aggregates. Interestingly, large numbers of actively-budding dictysomes, associated with pinocytotic vesicles, were observed in close proximity to the plasmalemma of mesophyll cells (Fig. 3.). By day 14 however, mesophyll cells showed almost complete breakdown of subcellular organelle structure (Fig. 4.), and further evidence for the breakdown of the tonoplast. The final stage of senescence is characterized by the solubilization of the cell wall due to expression and activity of polygalacturonase and/or cellulose. The presence of dictyosomes with associated pinocytotic vesicles formed from the mature face, in close proximity to both the plasmalemma and the cell wall, would appear to support the model proposed by Christopherson for the secretion of cellulase. This pathway of synthesis is typical for secretory glycoproteins.


Author(s):  
Shirley Siew ◽  
W. C. deMendonca

The deleterious effect of post mortem degeneration results in a progressive loss of ultrastructural detail. This had led to reluctance (if not refusal) to examine autopsy material by means of transmission electron microscopy. Nevertheless, Johannesen has drawn attention to the fact that a sufficient amount of significant features may be preserved in order to enable the establishment of a definitive diagnosis, even on “graveyard” tissue.Routine histopathology of the autopsy organs of a woman of 78 showed the presence of a well circumscribed adenoma in the anterior lobe of the pituitary. The lesion came into close apposition to the pars intermedia. Its architecture was more compact and less vascular than that of the anterior lobe. However, there was some grouping of the cells in relation to blood vessels. The cells tended to be smaller, with a higher nucleocytoplasmic ratio. The cytoplasm showed a paucity of granules. In some of the cells, it was eosinophilic.


Author(s):  
R. H. M. Langer ◽  
G. D. Hill
Keyword(s):  

Author(s):  
Bastien Trémolière ◽  
Marie-Ève Gagnon ◽  
Isabelle Blanchette

Abstract. Although the detrimental effect of emotion on reasoning has been evidenced many times, the cognitive mechanism underlying this effect remains unclear. In the present paper, we explore the cognitive load hypothesis as a potential explanation. In an experiment, participants solved syllogistic reasoning problems with either neutral or emotional contents. Participants were also presented with a secondary task, for which the difficult version requires the mobilization of cognitive resources to be correctly solved. Participants performed overall worse and took longer on emotional problems than on neutral problems. Performance on the secondary task, in the difficult version, was poorer when participants were reasoning about emotional, compared to neutral contents, consistent with the idea that processing emotion requires more cognitive resources. Taken together, the findings afford evidence that the deleterious effect of emotion on reasoning is mediated by cognitive load.


Sign in / Sign up

Export Citation Format

Share Document