Time of Sowing and the Yield of Winter Barley

1985 ◽  
Vol 104 (2) ◽  
pp. 405-411 ◽  
Author(s):  
C. F. Green ◽  
D. T. Furmston ◽  
J. D. Ivins

SummaryDuring three growing seasons (1980–3) the influence of sowing date (early September to mid-November) on the yield of winter barley (cv. Igri) was assessed. Delaying sowing resulted in a linear decrease in maximum grain yield at a rate of 0·43 % for every day sowing was delayed. Advancing the date of sowing increased the duration of preanthesis development, increased the level of tillering and hence ear density at harvest. Yield was linearly related to the resultant higher number of grains.

2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.


1992 ◽  
Vol 118 (3) ◽  
pp. 279-287 ◽  
Author(s):  
M. J. Conry ◽  
A. Hegarty

SUMMARYAn experiment, carried out over a 5-year period (1984–88) on medium–heavy textured soil at Athy (Ireland), tested the effect of five sowing dates (early September–early December) and four seed rates (c. 100, 150, 200 and 250 kg/ha) on the grain yield and protein content of winter barley (cv. Panda).September-sown plots gave the greatest yields in all years. Plots sown in mid-October and later gave significantly reduced yields. Yield reductions over the 5-year period averaged 15, 24 and 34% for the mid-October, November and December sowing dates, respectively. Significant differences in yield between the smaller and larger seed rates were obtained, with the latter giving the greatest yields at all sowing dates from late September to December. Increasing the seed rate, however, did not compensate for the yield reduction due to delayed sowing. In the early September-sown plots, the higher seed rates gave reduced yields in four of the five years (1984–87) with the opposite result in 1988. In 1988 the early September-sown plots gave greater yields than the late September-sown plots.Regression analysis showed a strong relationship between yield and log(ears/m2) in four of the five years (1984–87) but the relationship was poor in 1988 primarily due to the inexplicably low ear population of the early-sown plots. The inclusion of 1000-grain weight in the model gave a better fit and accounted for a high proportion (62–80%) of the yield variation.The late September sowing date and the higher seed rates gave slightly lower protein levels in four of the five years. There was an inverse relationship between grain yield and protein for the same four years (1984–87).


2015 ◽  
Vol 66 (4) ◽  
pp. 332 ◽  
Author(s):  
Lindsay W. Bell ◽  
Julianne M. Lilley ◽  
James R. Hunt ◽  
John A. Kirkegaard

Interest is growing in the potential to expand cropping into Australia’s high-rainfall zone (HRZ). Dual-purpose crops are suited to the longer growing seasons in these environments to provide both early grazing for livestock and later regrow to produce grain. Grain yield and grazing potential of wheats of four different maturity types were simulated over 50 years at 13 locations across Australia’s HRZ, and sowing date, nitrogen (N) availability and crop density effects were explored. Potential grazing days on wheat were obtained by simulating sheep grazing crops to Zadoks growth stage Z30 at 25 dry sheep equivalents (DSE)/ha. Optimal sowing dates for each maturity type at each location were matched to the flowering window during which risk of frost and heat stress was lowest. Overall, we found significant national potential for dual-purpose use of winter wheat cultivars across Australia’s HRZ, with opportunities identified in all regions. Simulated mean wheat yields exceeded 6 t/ha at most locations, with highest mean grain yields (8–10 t/ha) in southern Victoria, and lower yields (5–7 t/ha) in the south-west of Western Australia (WA) and central and northern New South Wales (NSW). Highest grazing days were from winter cultivars sown early (March–mid-April), which could provide 1700–3000 DSE-days/ha of grazing across HRZ locations; this was 2–3 times higher than could be obtained from grazing spring cultivars (200–800 DSE-days/ha). Sowing date was critical to maximise both grazing and grain yield potential from winter cultivars; each 1-week delay in sowing after 8 March reduced grazing by 200–250 DSE-days/ha and grain yield by 0.45 t/ha. However, in Mediterranean climates, a lower frequency of early sowing opportunities before mid-April (<30% of years) is likely to limit the potential to use winter cultivars. Prospects to graze shorter season spring cultivars that fit later sowing windows require further examination in south-west WA, the slopes of NSW and southern Queensland.


2019 ◽  
Vol 65 (2) ◽  
pp. 51-58
Author(s):  
Boryana Dyulgerova ◽  
Nikolay Dyulgerov

Abstract The aim of this study was to examine the genotype by environment interaction for grain yield and to identify high-yielding and stable mutant lines of 6-rowed winter barley under different growing seasons. The study was carried out during 7 growing seasons from 2010 – 2011 to 2016 – 2017 in the experimental field of the Institute of Agriculture – Karnobat, Southeastern Bulgaria. Fourteen advanced mutant lines and the check variety Vesletc were studied using a complete block design with 4 replications. The AMMI analysis of variance indicated that 20.54% of the variation for grain yield was explained by the effect of genotype and 37.34% and 42.12% were attributable to the environmental effects and genotype by environment interaction. The magnitude of the genotype by environment interaction was two times larger than that of genotypes, indicating that there was a substantial difference in genotype response across environments. The AMMI and GGE biplot analyses identified G9 as the highest yielding and stable genotype. This mutant line can be recommended for further evaluation for variety release. The mutant lines G6, G13 and G15 were suggested for inclusion in the breeding program of winter barley due to its high grain yield and intermediate stability.


2016 ◽  
Vol 67 (1) ◽  
pp. 117 ◽  
Author(s):  
Lindsay W. Bell ◽  
Julianne M. Lilley ◽  
James R. Hunt ◽  
John A. Kirkegaard

Interest is growing in the potential to expand cropping into Australia's high-rainfall zone (HRZ). Dual-purpose crops are suited to the longer growing seasons in these environments to provide both early grazing for livestock and later regrow to produce grain. Grain yield and grazing potential of wheats of four different maturity types were simulated over 50 years at 13 locations across Australia's HRZ, and sowing date, nitrogen (N) availability and crop density effects were explored. Potential grazing days on wheat were obtained by simulating sheep grazing crops to Zadoks growth stage Z30 at 25 dry sheep equivalents (DSE)/ha. Optimal sowing dates for each maturity type at each location were matched to the flowering window during which risk of frost and heat stress was lowest. Overall, we found significant national potential for dual-purpose use of winter wheat cultivars across Australia's HRZ, with opportunities identified in all regions. Simulated mean wheat yields exceeded 6t/ha at most locations, with highest mean grain yields (8–10t/ha) in southern Victoria, and lower yields (5–7t/ha) in the south-west of Western Australia (WA) and central and northern New South Wales (NSW). Highest grazing days were from winter cultivars sown early (March–mid-April), which could provide 1700–3000 DSE-days/ha of grazing across HRZ locations; this was 2–3 times higher than could be obtained from grazing spring cultivars (200–800 DSE-days/ha). Sowing date was critical to maximise both grazing and grain yield potential from winter cultivars; each 1-week delay in sowing after 8 March reduced grazing by 200–250 DSE-days/ha and grain yield by 0.45t/ha. However, in Mediterranean climates, a lower frequency of early sowing opportunities before mid-April (


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 751-763 ◽  
Author(s):  
Milan Mirosavljevic ◽  
Novo Przulj ◽  
Vojislava Momcilovic ◽  
Nikola Hristov ◽  
Ivana Maksimovic

Knowledge about the effect of genotypic variation and sowing date on dry matter accumulation, remobilization and partitioning in winter barley is important for crop management. Therefore, in field studies, six winter barley genotypes of various origin and maturity groups were studied across four sowing dates. In general, grain yield and dry matter content decreased with delayed sowing, after mid-October, and average grain yield in late October and November sowing was lower 14.2% and 16.9%, respectively, compared to the yield in the optimal sowing date. Among the tested genotypes, high grain yield and dry matter content was obtained from late and medium early barley genotypes. Delayed sowing dates, on average, reduced dry matter remobilization and contribution of vegetative dry matter to grain yield. In years characterized by high spring precipitation, late September and early October sowing of medium early and late barley genotypes enable increased accumulation and remobilization of dry matter and obtainment of high grain yield.


2020 ◽  
Vol 71 (2) ◽  
pp. 183
Author(s):  
Jimena Pérez Brandán ◽  
Ramiro N. Curti ◽  
Martin M. Acreche

Effect of thermo-photoperiod conditions on pre-flowering phasic development, number of unfolded leaves, verticillaster dry weight at flowering (VDWFL) and grain yield were evaluated for chia (Salvia hispanica L.). The objectives of this study were to: (i) characterise the pre-flowering response of chia to thermo-photoperiod conditions during and pre- and post-inductive subphases; and (ii) determine the relationships between the duration of pre-flowering subphases, the VDWFL and grain yield. Sowing-date experiments were conducted during three consecutive growing seasons with two chia genotypes under non-stressed conditions. Responses to thermo-photoperiod conditions were characterised by fitting a bi-linear model. All pre-flowering subphases showed a quantitative short-day response with a decrease in sensitivity to photoperiod in the later post-inductive subphase. The duration of the pre-inductive subphase was associated with the number of accumulated unfolded leaves, whereas the durations of the post-inductive subphases were not determined by the number of accumulated unfolded leaves. Higher VDWFL was achieved when durations of the pre-flowering subphases increased. In addition, increases in the VDWFL explained most of the variation in grain yield along the thermo-photoperiod conditions. Accordingly, this study suggests that developmental responses of chia and their relationships with VDWFL and grain yield should be taken into account for grain-yield improvement of this orphan crop.


2013 ◽  
pp. 95-102
Author(s):  
Novo Przulj ◽  
Vojislava Momcilovic

Development and growth of leaves in cereals significantly affects grain yield since dry matter accumulation depends on the leaf area that intercepts light. Phyllochron (PHY) is defined as time interval between the emergences of successive leaves on the main stem. The aim of this study was to determine the effect of year and cultivar on phyllochron in winter barley. Twelve cultivars of winter barley differing in origin and time of anthesis were tested during six growing seasons (GS), from 2002/03 to 2007/08. The highest PHY across GSs was determined in the two-rowed cultivar Cordoba (81.6?Cd) and the lowest in the two-rowed cultivar Novosadski 581 (71.0?Cd). The early cultivars had fast leaf development, the medium cultivars medium and the late cultivars slow development, 72.5?Cd, 75.6?Cd and 78.9?Cd, respectively. The tested cultivars showed significant variability in the PHY, which can be used for selecting most adaptable genotypes for specific growing conditions.


2016 ◽  
Vol 10 (10) ◽  
pp. 193
Author(s):  
Amir Tabarzad ◽  
Ali Asghar Ghaemi ◽  
Shahrokh Zand-parsa

The present study was conducted to investigate the relational effects of various sowing dates and deficit irrigation on grain yield, protein and yield components of barley, in a semi-arid region (southern part of Iran) during growing seasons 2011-2012 and 2012-2013. A Split plot layout within a randomized complete block design with three replications was used. Main plots were selected as Irrigation treatments with varying water irrigation levels consisting of: (1) full irrigation, FI, (2) 0.75 FI, (3) 0.5 FI and (4) Dry land (rain-fed) during both growing seasons. Sub plots were the sowing dates consisted of: (1) 23th October (T1), (2) 6th and (3) 22th November (T2 and T3) and (4) 6th December (T4). The interaction of different irrigation levels and sowing dates had a significant impact (p<0.05) on grain yield, grain and straw protein, 1000-grain weight, plant height, biomass, water use efficiency (WUE), and crop evapotranspiration. Results revealed that the largest amount of protein was obtained in the latest sowing date (T4) at dry land treatment in two consecutive years. Full irrigation treatment showed the largestrate of dry matter accumulation (14.72 and 15.25 Mg.h-1 for the first and second years, respectively), while the smallest rate was seen in the rain fed treatment (4.22 and 7.43 Mg.h-1 for the first and second years, respectively). The largest yield was obtained with the 23th October (T1) sowing date in full irrigation treatments (FI). The largest water use efficiency was achieved with 0.5FI and the earliest sowing date (T1).


2001 ◽  
Vol 49 (3) ◽  
pp. 293-297
Author(s):  
S. O. Bakare ◽  
M. G. M. Kolo ◽  
J. A. Oladiran

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.


Sign in / Sign up

Export Citation Format

Share Document