orphan crop
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 24)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Idris I Adejumobi ◽  
Paterne AGRE ◽  
Didy O. Anautshu ◽  
Joseph G. Adheka ◽  
Mokonzi G. Banbanota ◽  
...  

Abstract BackgroundYam ( Dioscorea spp .) is cultivated in many villages of DR Congo as a means to sustain food security and alleviate poverty. However, the extent of the existing diversity has not been studied in details thus, considered as an orphan.MethodologyA survey covering 540 farmers in 54 villages was conducted in six major yam growing territories covering three provinces in DR Congo to investigate the diversity, management and utilization of yam landraces using pre-elaborate questionnaires.ResultsSubject to synonymy, a total of 67 landraces clones from five different species were recorded. Farmers’ challenges limiting yam production were poor tuber qualities (69%), harvest pest attack (7%), difficulty in harvesting (6%), poor soil status (6%). The overall diversity was moderate among the recorded yam germplasm maintained at the household level (1.32) and variability exist in diversity amongst the territories and provinces. Farmers’ in territories of Tshopo and Mongala provinces maintained higher level of germplasm diversity (2.79 and 2.77) compared to the farmers in territories of Bas-Uélé (1.67). Some yam landraces had limited abundance and distribution due to loss of production interest in many villages attributable to poisons contained hence, resulting in possible extinction. Farmers’ most preferred seed source for cultivation were backyard (43%) and exchange with neighboring farmers (31%) with the objective of meeting food security and generating income. In villages where yam production is expanding, farmers are relying on landraces with good tuber qualities and high yield even though they are late maturing.ConclusionThis study revealed the knowledge of yam genetic diversity, constraints to production and farmers’ preferences criteria as a guide for collection and conservation of yam genetic resources for yam improvement intervention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sebastian Schramm ◽  
Wilfried Rozhon ◽  
Adebimpe N. Adedeji-Badmus ◽  
Yuanyuan Liang ◽  
Shahran Nayem ◽  
...  

Crassocephalum crepidioides is an African orphan crop that is used as a leafy vegetable and medicinal plant. Although it is of high regional importance in Sub-Saharan Africa, the plant is still mainly collected from the wild and therefore efforts are made to promote its domestication. However, in addition to beneficial properties, there was first evidence that C. crepidioides can accumulate the highly toxic pyrrolizidine alkaloid (PA) jacobine and here it was investigated, how jacobine production is controlled. Using ecotypes from Africa and Asia that were characterized in terms of their PA profiles, it is shown that the tetraploid C. crepidioides forms jacobine, an ability that its diploid close relative Crassocephalum rubens appears to lack. Evidence is provided that nitrogen (N) deficiency strongly increases jacobine in the leaves of C. crepidioides, that this capacity depends more strongly on the shoot than the root system, and that homospermidine synthase (HSS) activity is not rate-limiting for this reaction. A characterization of HSS gene representation and transcription showed that C. crepidioides and C. rubens possess two functional versions, one of which is conserved, that the HSS transcript is mainly present in roots and that its abundance is not controlled by N deficiency. In summary, this work improves our understanding of how environmental cues impact PA biosynthesis in plants and provides a basis for the development of PA-free C. crepidioides cultivars, which will aid its domestication and safe use.


Nature Food ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 220-220
Author(s):  
Yufang Guo
Keyword(s):  

2021 ◽  
Author(s):  
Yu Sugihara ◽  
Aoi Kudoh ◽  
Muluneh Tamiru Oli ◽  
Hiroki Takagi ◽  
Satoshi Natsume ◽  
...  

AbstractYam is a collective name of tuber crops belonging to the genus Dioscorea. Yam is important not only as a staple food crop but also as an integral component of society and culture of the millions of people who depend on it. However, due to its regional importance, yam has long been regarded as an “orphan crop” lacking a due global attention. Although this perception is changing with recent advances in genomics technologies, domestication processes of most yam species are still ambiguous. This is mainly due to the complicated evolutionary history of Dioscorea species caused by frequent hybridization and polyploidization, which is possibly caused by dioecy that imposed obligate outcrossing to the species of Dioscorea. In this chapter, we provide an overview of the evolution of Dioscorea and address the domestication of yam from population genomics perspectives by focusing on the processes of hybridization and polyploidization. A review is given to the recent population genomics studies on the hybrid origin of D. rotundata in West and Central Africa, the global dispersion of D. alata through human migrations, and the whole-genome duplication of the South America species of D. trifida. In the end, we give a summary of current understanding of sex-determination system in Dioscorea.


2020 ◽  
Author(s):  
Dilan S. R. Patiranage ◽  
Elodie Rey ◽  
Nazgol Emrani ◽  
Gordon Wellman ◽  
Karl Schmid ◽  
...  

AbstractQuinoa germplasm preserves useful and substantial genetic variation, yet it remains untapped due to a lack of implementation of modern breeding tools. We have integrated field and sequence data to characterize a large diversity panel of quinoa. Whole-genome sequencing of 310 accessions revealed 2.9 million polymorphic high confidence SNP loci. Highland and Lowland quinoa were clustered into two main groups, with FST divergence of 0.36 and fast LD decay of 6.5 and 49.8 Kb, respectively. A genome-wide association study uncovered 600 SNPs stably associated with 17 agronomic traits. Two candidate genes are associated with thousand seed weight, and a resistance gene analog is associated with downy mildew resistance. We also identified pleiotropically acting loci for four agronomic traits that are highly responding to photoperiod hence important for the adaptation to different environments. This work demonstrates the use of re-sequencing data of an orphan crop, which is partially domesticated to rapidly identify marker-trait association and provides the underpinning elements for genomics-enabled quinoa breeding.


2020 ◽  
Vol 137 ◽  
pp. 109636 ◽  
Author(s):  
Solomon Tamrat ◽  
James S. Borrell ◽  
Manosh K. Biswas ◽  
Dawd Gashu ◽  
Tigist Wondimu ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1221
Author(s):  
Naama Teboul ◽  
Yaron Gadri ◽  
Zipi Berkovich ◽  
Ram Reifen ◽  
Zvi Peleg

Genetic dissection of yield components and seed mineral-nutrient is crucial for understanding plant physiological and biochemical processes and alleviate nutrient malnutrition. Sesame (Sesamum indicum L.) is an orphan crop that harbors rich allelic repertoire for seed mineral–nutrients. Here, we harness this wide diversity to study the genetic architecture of yield components and seed mineral–nutrients using a core-collection of worldwide genotypes and segregating mapping population. We also tested the association between these traits and the effect of seed nutrients concentration on their bio-accessibility. Wide genetic diversity for yield components and seed mineral–nutrients was found among the core-collection. A high-density linkage map consisting of 19,309 markers was constructed and used for genetic mapping of 84 QTL associated with yield components and 50 QTL for seed minerals. To the best of our knowledge, this is the first report on mineral–nutrients QTL in sesame. Genomic regions with a cluster of overlapping QTL for several morphological and nutritional traits were identified and considered as genomic hotspots. Candidate gene analysis revealed potential functional associations between QTL and corresponding genes, which offers unique opportunities for synchronous improvement of mineral–nutrients. Our findings shed-light on the genetic architecture of yield components, seed mineral–nutrients and their inter- and intra- relationships, which may facilitate future breeding efforts to develop bio-fortified sesame cultivars.


Planta ◽  
2020 ◽  
Vol 252 (4) ◽  
Author(s):  
Janina Epping ◽  
Natalie Laibach

Abstract Main conclusion The diversification of food crops can improve our diets and address the effects of climate change, and in this context the orphan crop Chinese yam shows significant potential as a functional food. Abstract As the effects of climate change become increasingly visible even in temperate regions, there is an urgent need to diversify our crops in order to address hunger and malnutrition. This has led to the re-evaluation of neglected species such as Chinese yam (Dioscorea polystachya Turcz.), which has been cultivated for centuries in East Asia as a food crop and as a widely-used ingredient in traditional Chinese medicine. The tubers are rich in nutrients, but also contain bioactive metabolites such as resistant starches, steroidal sapogenins (like diosgenin), the storage protein dioscorin, and mucilage polysaccharides. These health-promoting products can help to prevent cardiovascular disease, diabetes, and disorders of the gut microbiome. Whereas most edible yams are tropical species, Chinese yam could be cultivated widely in Europe and other temperate regions to take advantage of its nutritional and bioactive properties. However, this is a laborious process and agronomic knowledge is fragmented. The underground tubers contain most of the starch, but are vulnerable to breaking and thus difficult to harvest. Breeding to improve tuber shape is complex given the dioecious nature of the species, the mostly vegetative reproduction via bulbils, and the presence of more than 100 chromosomes. Protocols have yet to be established for in vitro cultivation and genetic transformation, which limits the scope of research. This article summarizes the sparse research landscape and evaluates the nutritional and medical applications of Chinese yam. By highlighting the potential of Chinese yam tubers, we aim to encourage the adoption of this orphan crop as a novel functional food.


Sign in / Sign up

Export Citation Format

Share Document