scholarly journals Pre-anthesis development of winter wheat and barley and relationships with grain yield

2018 ◽  
Vol 64 (No. 7) ◽  
pp. 310-316 ◽  
Author(s):  
Mirosavljevic Milan ◽  
Momcolovic Vojislava ◽  
Maksimovic Ivana ◽  
Putnik-Delic Marina ◽  
Pržulj Novo ◽  
...  

The aim of this study was to improve understanding of (1) the effect of genotypic and environmental factors on pre-anthesis development and leaf appearance traits of barley and wheat; (2) the relationship of these factors with grain yield, and (3) the differences between these two crops across different environments/sowing dates. Therefore, trials with six two-row winter barley and six winter wheat cultivars were carried out in two successive growing seasons on four sowing dates. Our study showed that the observed traits varied between species, cultivars and sowing dates. In both growing seasons, biomass at anthesis and grain yield declined almost linearly by delaying the sowing date. There was no clear advantage in grain yield of wheat over barley under conditions of later sowing dates. Generally, barley produced more leaf and had shorter phyllochron than wheat. Both wheat and barley showed a similar relationship between grain yield and different pre-anthesis traits.

Author(s):  
Lijun Yin ◽  
Chengxiang Zhang ◽  
Kaizhen Liu ◽  
Xiaoyan Wang

Abstract Global warming increases the risk of pests and weeds before wintering, and decreases the grain yield of winter wheat. Therefore, the sowing date should be delayed properly. But the variety of winter wheat that can adapt to late sowing remains unclear. Here, we selected two winter wheat cultivars and evaluated four sowing date treatments on 1 October (early sowing), 8 (normal sowing), 15 (late sowing) and 22 (latest sowing) over two wheat-growing seasons at the experimental Station of Shandong Agricultural University (35°96′N, 117°06′E), Daiyue District, Taian, Shandong, China. We examined the effects of sowing date on a few traits, and found that, compared with normal sowing, though spike number decreased, grain yield was maintained above 9300 kg/ha under late and latest sowing. The main reason was that the more accumulated N from jointing to anthesis resulted in a higher grain number per spike. The higher net photosynthetic rate after anthesis, through optimizing N distribution in the canopy and increasing Rubisco content of flag leaves, improved dry matter accumulation rate and contribution ratio of vegetative organs, ultimately, ensured consistent grain weight. The grain yield of high-tillering winter wheat cultivars decreased from 9370 to 8346 kg/ha. The main reason was that spike number, accumulated N from jointing to anthesis and net photosynthetic rate decreased significantly, which reduced the dry matter accumulation rate, and only satisfied less grains to achieve consistent grain weight. Therefore, low-tillering winter wheat cultivars are more adaptable to late sowing, and can reduce the harm of global warming.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1077
Author(s):  
Ting Chen ◽  
Yonghe Zhu ◽  
Rui Dong ◽  
Minjian Ren ◽  
Jin He ◽  
...  

The relationship between the sowing patterns and yield performance is a valuable topic for food security. In this study, a novel belt uniform (BU) sowing pattern was reported, and a field experiment with four winter wheat cultivars was carried out over three consecutive growing seasons to compare the dry matter accumulation, harvest index (HI), grain yield and yield components under BU and line and dense (LD) sowing patterns [BU sowing with narrow (15 cm) spacing; BU sowing with wide (20 cm) spacing; LD sowing with wide (33.3 cm) row spacing; LD sowing with narrow (16.6 cm) row spacing]. Four cultivars produced a higher mean grain yield (GY), above-ground biomass (AGB) and spike number (SN) per m2 under the BU sowing patterns than the LD sowing patterns in all three growing seasons. However, yield stability under the BU sowing patterns did not increase with the improved grain yield. The HI did not change with sowing patterns, and the contribution of above-ground biomass to grain yield (84%) was more than 5-fold higher than that of HI (16%). Principal component and correlation analyses indicated that the grain yield was positively correlated with the aboveground biomass and SN, while the HI and 1000-grain weight were not correlated with grain yield. We concluded that (1) the novel BU sowing patterns achieved a higher yield potential in winter wheat but did not further improve yield stability; (2) increasing the dry matter accumulation without changing the HI drove improvements in the SN and grain number per spike, thus increasing grain yield.


2020 ◽  
Vol 206 (6) ◽  
pp. 722-733 ◽  
Author(s):  
Siegfried Schittenhelm ◽  
Tina Langkamp‐Wedde ◽  
Martin Kraft ◽  
Lorenz Kottmann ◽  
Katja Matschiner

1994 ◽  
Vol 86 (5) ◽  
pp. 891-896 ◽  
Author(s):  
Richard E. Engel ◽  
Joyce Eckhoff ◽  
Robert K. Berg

2003 ◽  
Vol 140 (4) ◽  
pp. 395-407 ◽  
Author(s):  
R. E. RUSKE ◽  
M. J. GOODING ◽  
S. A. JONES

Field experiments were conducted over 3 years to assess the effect of a triazole fungicide programme, and additions of strobilurin fungicides to it, on nitrogen uptake, accumulation and partitioning in a range of winter wheat cultivars. Commensurate with delayed senescence, fungicide programmes, particularly when including strobilurins, improved grain yield through improvements in both crop biomass and harvest index, although the relationship with green area duration of the flag leaf (GFLAD) depended on year and in some cases, cultivar. In all years fungicide treatments significantly increased the amount of nitrogen in the above-ground biomass, the amount of nitrogen in the grain and the nitrogen harvest index. All these effects could be linearly related to the fungicide effect on GFLAD. These relationships occasionally interacted with cultivar but there was no evidence that fungicide mode of action affected the relationship between GFLAD and yield of nitrogen in the grain. Fungicide treatments significantly reduced the amount of soil mineral N at harvest and when severe disease had been controlled, the net remobilization of N from the vegetation to the grain after anthesis. Fungicide maintained the filling of grain with both dry matter and nitrogen. The proportionate accumulation of nitrogen in the grain was later than that of dry matter and this difference was greater when fungicide had been applied. Effects of fungicide on grain protein concentration and its relationship with GFLAD were inconsistent over year and cultivar. There were several instances where grain protein concentration was unaffected despite large (1·5 t/ha) increases in grain yield following fungicide use. Dilution of grain protein concentration following fungicide use, when it did occur, was small compared with what would be predicted by adoption of other yield increasing techniques such as the selection of high yielding cultivars (based on currently available cultivars) or by growing wheat in favourable climates.


1976 ◽  
Vol 16 (78) ◽  
pp. 129
Author(s):  
PN Vance

The relationship between grain yield and five plant characters in grain sorghum hybrid Pioneer 846 was studied. Grain yield was closely correlated with head weight, weight of a standard length of peduncle (WSP), peduncle perimeter (PP), head length and breadth. The close correlation of grain yield on WSP was shown to exist at a number of sites and for a number of varieties. However, regression equations differed for different sites, sowing dates and varieties. Of the two components of grain yield per head, single grain weight and grain number; only grain number was closely correlated with WSP. In one instance where moisture stress affected grain development, grain number but not yield was closely correlated with WSP. WSP was shown not to be affected by damage to the head and could therefore be used to estimate potential yield in agronomic trials where yield loss due to pest activity has occurred.


2013 ◽  
Vol 50 (2) ◽  
pp. 81-94 ◽  
Author(s):  
Mirosław Krzyśko ◽  
Adriana Derejko ◽  
Tomasz Górecki ◽  
Edward Gacek

Summary The aim of this paper is to present a statistical methodology to assess patterns of cultivars' adaptive response to agricultural environments (agroecosystems) on the basis of complete Genotype x Crop Management x Location x Year (GxMxLxY) data obtained from 3-year multi-location twofactor trials conducted within the framework of the Polish post-registration trials (PDOiR), with an illustration of the application and usefulness of this methodology in analyzing winter wheat grain yield. Producing specific varieties for each subregion of a target region, from widely adapted varieties, may exploit positive genotype x location (GL) interactions to increase crop yields. Experiments designed to examine combinations of environment (E), management practices (M) and cultivars (G) also provide evidence of the relative importance of each of these factors for yield improvement. The evidence shows that variation due to E far outweighs the variation of grain yield that can be attributed to M or G, or the interactions between these factors, and between these factors and E (Anderson, 2010). This statistical method involves the use of functional PCA and cluster analysis. A total of 24 cultivars were evaluated over 3 years in 20 environments using randomized incomplete split-block designs with two replications per trial. The methodology proved an efficient tool for the reliable classification of 24 winter wheat cultivars, distinguishing cultivar groups that exhibited homogeneous adaptive response to environments. It enables the identification of cultivars displaying wide or specific adaptation. The remaining cultivars were locally adapted to some testing environments, or some of them were not relatively adapted to the environments because they always yielded substantially below the environmental means. Performing earlier specific selection, or adopting distinct genetic bases for each agro-ecosystem, may further increase the advantage of specific breeding.


Sign in / Sign up

Export Citation Format

Share Document