Plant growth and seed yield of sorghum when intercropped with legumes

1986 ◽  
Vol 107 (3) ◽  
pp. 621-627 ◽  
Author(s):  
S. K. Bandyopadhyay ◽  
R. De

SUMMARYField experiments made for 2 years under semi-arid unirrigated conditions of north India examined the physiological factors affecting the growth and yield of sorghum when intercropped with groundnut (Arachis hypogaea), mung (Vigna radiata) or cow pea (V. unguiculata). Dry-matter production and leaf area index of sorghum were increased when intercropped with any of the legumes. The mixture advantage was reflected in delaying the senescence of sorghum leaves. Maximum grain and stover yields of sorghum were obtained in a mixture with mung or cow pea. The higher seed yield resulted from more seeds per panicle and greater panicle and 1000-grain weight.

2016 ◽  
Vol 41 (4) ◽  
pp. 759-772
Author(s):  
SS Kakon ◽  
MSU Bhuiya ◽  
SMA Hossain ◽  
Q Naher ◽  
Md DH Bhuiyan

Field experiments were conducted during rabi (winter) seasons of 2010-11 and 2011-12 at the Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur to study the effects of nitrogen and phosphorus on growth, dry matter production and yield of French bean. A randomized complete block design was followed with 10 combinations of N (0,50, 100, 150 and 200) and P (0,22, 33, 44 and 55) kg ha-1 along with a blanket dose of control. All the treatments showed the maximum leaf area index (LAI) at 65 days after sowing (DAS). All the treatments showed the maximum total dry matter production, crop growth rate and net assimilation rate at harvest and at 55-65 DAS, respectively in both the years. LAI, dry matter production, CGR, NAR and seed yield significantly increased with the increase in nitrogen and phosphorus level upto 150 kg N and 44 P kg ha-1 , respectively. Similar trend was followed in maximum number of pods (9.45) and seed yield (1563.33 kg ha-1). The treatment comprises with 150 kg N and 44 P Kg ha-1 gave the highest seed yield which was 51.40 and 54.30 % higher than control plots.Bangladesh J. Agril. Res. 41(4): 759-772, December 2016


Weed Science ◽  
1990 ◽  
Vol 38 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Barry D. Sims ◽  
Lawrence R. Oliver

Field experiments were conducted to evaluate competitive effects of johnsongrass and sicklepod on growth and yield of irrigated and nonirrigated soybeans. Johnsongrass reduced soybean growth early in the growing season. Sicklepod was competitive all season, but competitiveness was greatest during the soybean reproductive stage. Soybean yields were reduced 31% by sicklepod, 14% by johnsongrass, and 36% by both weeds growing together. Nonirrigated soybeans yielded less than irrigated, but percent yield reductions were similar. Johnsongrass dry matter production and seed yield were reduced more than sicklepod by soybean interference. Soybean and sicklepod interference reduced johnsongrass seed production 73 to 95%. Johnsongrass produced 245 to 1238 seeds per plant when interfering with soybeans and sicklepod. Sicklepod seeds per plant were reduced 6 to 31% by johnsongrass interference and 47 to 75% by soybeans and soybeans plus johnsongrass.


Author(s):  
Dhimmagudi Ramamohan Reddy ◽  
P. Shalini Pillai ◽  
Jacob John ◽  
A. Sajeena ◽  
J.C. Aswathy

Background: In the recent years, the yield plateau of the major cereals together with the climate change concerns, the potential of millets and pulses have been identified as pivotal for addressing the agrarian and nutritional challenges. The present study was conducted to assess the feasibility of intercropping green gram, black gram and cowpea in finger millet.Methods: A field experiment was conducted during summer 2019-2020 (February to May, 2020) to assess the variation in the growth and yield of pulses, viz., green gram, black gram and cowpea on intercropping with finger millet, along with and without AMF inoculation.Result: Pulses were observed to be significantly taller when intercropped with finger millet in the presence of AMF. Leaf area index (LAI), dry matter production, seed yield and haulm yield were higher for sole crops. Between the intercropping treatments, with and without AMF, LAI, dry matter production and seed yield were superior when pulses where intercropped in finger millet inoculated with AMF. Intercropping finger millet with cowpea recorded the highest finger millet equivalent yield (FMEY) followed by black gram and green gram. The treatment, T6 (finger millet with AMF + cowpea) registered the highest FMEY (3388 kg ha-1) followed by T5 (3234 kg ha-1). Intercropping finger millet (with AMF) with black gram (T4) and green gram (T2) recorded FMEY of 2708 kg ha-1 and 2497 kg ha-1 respectively.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


1995 ◽  
Vol 31 (1) ◽  
pp. 39-47 ◽  
Author(s):  
D. J. Bonfil ◽  
M. J. Pinthus

SummaryChickpea yields in Israel are usually considerably lower than wheat yields under comparable conditions. This study aimed to examine the possible yield limiting factors in chickpeas. Increasing the availability of nitrogen during seed development by a pre-sowing application of nitrate or by nitrogen top dressing at the onset of flowering led to an increase in the percentage of nitrogen in the straw but had no significant effect on seed yield. Growth analysis of chickpeas and wheat grown in two adjacent field experiments revealed that during the fruiting period these crops accumulated similar amounts of dry matter. However, the proportion of total wheat dry matter accumulated in the wheat grains was twice the proportion of total chickpea dry matter accumulated in the chickpea seeds. It was concluded that the main intrinisic factor limiting the seed yield of chickpeas is the continuation of vegetative growth during the period of seed development, which reduces the amount of assimilate allocated to the seeds.Los factores restrictivos del rendimiento en el garbanzo


1970 ◽  
Vol 34 (1) ◽  
pp. 67-73
Author(s):  
M SH Islam ◽  
MSU Bhuiya ◽  
AR Gomosta ◽  
AR Sarkar ◽  
MM Hussain

Pot experiments were conducted during T. aman 2001 and 2002 (wet season) at Bangladesh Rice Research Institute (BRRI) in net house. Hybrid variety Sonarbangla-1 and inbred modern variety BRRI dhan-31 were used in both the seasons and BRRI hybrid dhan-l was used in 2002. The main objective of the experiments was to compare the growth and yield behaviour of hybrid and inbred rice varieties under controlled condition. In 2001, BRRI dhan-3l had about 10-15% higher plant height, very similar tillers/plant, 15-25% higher leaf area at all days after transplanting (DAT) compared to Sonarbangla-1. Sonarbangla- 1 had about 40% higher dry matter production at 25 DAT but had very similar dry matter production at 50 and 75 DAT, 4-11% higher rooting depth at all DATs, about 22% higher root dry weight at 25 DAT, but 5-10% lower root dry weight at 50 and 75 DAT compared to BRRI dhan-31. The photosynthetic rate was higher (20 μ mol m-2/sec-1) in BRRI dhan-3l at 35 DAT (maximum tillering stage) but at 65 DAT, Sonarbangla-l had higher photosynthetic rate of 19.5 μ mol m-2 sec-1. BRRI dhan-3l had higher panicles/plant than Sonarbangla-1, but Sonarbangla-1 had higher number of grains/panicle, 1000-grain weight and grain yield than BRRI dhan-31. In 2002, BRRI dhan-31 had the highest plant height at 25 DAT, but at 75 DAT, BRRI hybrid dhan-l had the highest plant height. Sonarbangla-1 had the largest leaf area at 25 and 50 DAT followed by BRRI dhan-31, but at 75 DAT, BRRI dhan-31 had the largest leaf area. The highest shoot dry matter was observed in BRRI dhan-31 followed by Sonarbangla-1 at all DATs. Sonarbangla-1 had the highest rooting depth and root dry weight at all DATs. BRRI dhan-31 gave the highest number of panicles/plant followed by Sonarbangla-I, BRRI hybrid dhan-l had the highest grains/panicle followed by BRRI dhan-31 and Sonarbangla-I had the highest 1000-grain weight followed by BRRI dhan-31. The highest amount of grains/plant (34.6 g) was obtained from BRRI dhan-31. Key Words: Shoot dry matter; root dry weight; leaf area; photosynthesis; grain yield. DOI: 10.3329/bjar.v34i1.5755Bangladesh J. Agril. Res. 34(1) : 67-73, March 2009


2002 ◽  
Vol 42 (8) ◽  
pp. 1043 ◽  
Author(s):  
M. Seymour ◽  
K. H. M. Siddique ◽  
N. Brandon ◽  
L. Martin ◽  
E. Jackson

The response of Vicia sativa (cvv. Languedoc, Blanchefleur and Morava) and V. benghalensis (cv. Barloo) seed yield to seeding rate was examined in 9 field experiments across 2 years in south-western Australia. There were 2 types of field experiments: seeding rate (20, 40, 60, 100 and 140 kg/ha) × cultivar (Languedoc, Blanchefleur, and Morava or Barloo), and time of sowing (2 times of sowing of either Languedoc or Blanchefleur) × seeding rate (5,�7.5, 10, 15, 20, 30, 40, 50, 75 and 100 kg/ha).A target density of 40 plants/m2 gave 'optimum' seed yield of vetch in south-western Australia. In high yielding situations, with a yield potential above 1.5 t/ha, the 'optimum' plant density for the early flowering cultivar Languedoc (85–97 days to 50% flowering) was increased to 60 plants/m2. The later flowering cultivar Blanchefleur (95–106 days to 50% flowering) had an optimum plant density of 33 plants/m2 at all sites, regardless of fitted maximum seed yield. Plant density in the range 31–38 plants/m2 was found to be adequate for dry matter production at maturity of Languedoc and Blanchefleur. For the remaining cultivars Barloo and Morava we were unable to determine an average optimum density for either dry matter or seed yield due to insufficient and/or inconsistent data.


2016 ◽  
Vol 19 (1) ◽  
pp. 19-28
Author(s):  
M Akter ◽  
QA Khaliq ◽  
MR Islam ◽  
JU Ahmed

An experiment was conducted at the research field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706 from March to June 2014 to evaluate growth and yield performance of sesame genotypes. Five sesame genotypes i.e. DB-6992, BD-6995, BD-7001, BD-7011 and Hathazari-4 were used in the study. The genotypes significantly differed in photosynthetic rate, dry matter partitioning and seed yield. The earliest genotype was Hathazari-4 and the latest was BD-7011. The highest stem dry weight, leaf dry weight, capsule dry weight, leaf area index, light interception, photosynthetic rate were recorded in genotype Hathazari-4. The number of capsules plant-1 and the number of seeds capsule-1 were also highest in the genotype Hathazari-4, while the lowest was being noticed in the genotype BD- 7001. Weight of 1000-seed was the maximum in genotype BD-6992 and the minimum in the genotype BD- 7011. The highest seed yield (3.52 tha-1) was recorded in the genotype Hathazari-4 and the lowest in the genotypes BD-6992 followed by BD-7001. The highest oil content (41.39%) was recorded in the genotype BD-6992 and the lowest (39.72%) in the genotype Hathazari-4 but the highest oil yield (1.53 t ha-1) was recorded in the genotype Hathazari-4. It may be concluded that the sesame genotype Hathazari-4 may be cultivated for higher seed yield and oil production.Bangladesh Agron. J. 2016, 19(1): 19-28


Author(s):  
B. Sreedevi ◽  
Aarti Singh ◽  
M. Tejaswini

Aerobic rice is a new way of cultivating rice that requires less water than lowland rice. A field experiment was conducted during the kharif season of 2015 to evaluate the effects of nutrient management with Biofertilizers on growth and yield attributes, yield, nutrient uptake and economics different rice cultivars. The experiment was laid out split plot design with four replications. Main plot treatments consisted of two cultivars viz., whereas, sub plot treatments comprised of nutrient management practices namely, N1-125% RDF, N2-125% RDF + Biofertilizers, N3 -100% RDF, N4 -100% RDF + Biofertilizers, N5-75% RDF, N6-75% RDF + Biofertilizers. The source of biofertiliser was a combination of Azospirillum, Phosphorus Solubilizing Bacteria and Potassium Solubilizer applied @ 5 kg/ha-1. Crop dry matter production (2582.3 g/m2), root dry matter production (910.1 g/m2), tillers/m2 (566), leaf area index (4.54), panicles/m2 (535), panicle length (23.81), panicle weight (4.56) and test weight (25.3) was higher in PA 6444 compared to DRR Dhan 44. Higher uptake of nutrients was also observed in PA 6444. Rice fertilized with 125% RDF + Biofertilizers (N2) produced higher crop (2901.6 g/m2) and root dry matter production (1028.1 g/m2), tillers/m2 (561) and leaf area index (5.19). This treatment also recorded higher yield attributes and grain yield (3.55 t/ha). With respect to nutrient uptake, application of 125% RDF + Biofertilizers (N2) recorded      higher N, P and K uptake by grain and straw and higher profitability (1.57) than other nutrient combinations.


Author(s):  
S. R. Kavya ◽  
K. Ushakumari

Kunapajala is a fermented liquid organic manure mentioned in Vrikshayurvedha and now a days popular among farmers. A field experiment was conducted to evaluate the soil and foliar efficacy of 2% and 5% herbal and non- herbal Kunapajala on plant growth by using bhindi. Kunapajala treatment was compared with inorganic fertilizers, Panchagavya and fish amino acid. Foliar application of 5% non-herbal Kunapajala recorded the highest growth and yield attributes such as plant height (124.4 cm), number of branches (3.73), leaf area index (1.42) , dry matter production (3845.51 kg ha-1, number of fruits per plant (25.5), length of fruits (15.24 cm), girth of fruits (7.22 cm), average fruit weight (20.8 g) and yield (20.78 t ha-1).


Sign in / Sign up

Export Citation Format

Share Document