Seasonal changes in leaf water relations and cell membrane stability in orchardgrass (Dactylis glomerata)

1993 ◽  
Vol 121 (2) ◽  
pp. 169-175 ◽  
Author(s):  
G. S. Premachandra ◽  
H. Saneoka ◽  
K. Fujita ◽  
S. Ogata

SUMMARYFifteen cultivars of orchardgrass (Dactylis glomerata L.) were grown in the field at Hiroshima University, Japan, to investigate seasonal changes in leaf water relations and cell membrane stability (CMS) measured by the polyethylene glycol (PEG) test. Leaf water potential and osmotic potential were measured from August 1988 to August 1989. Solute concentration in leaf cell sap was also estimated.Cell membrane stability increased, leaf water potential and osmotic potential decreased and turgor potential increased with decreasing environmental temperatures during autumn and winter. The significant increases observed in CMS may enable plants to tolerate freezing temperatures during winter. Decrease in leaf water potential may be a result of water-deficit effects due to soil freezing at low temperatures and the decrease in osmotic potential may help plants to maintain turgor and tolerate freezing conditions. Plants maintained higher turgor as the osmotic potential decreased to values as low as – 3·98 MPa during winter; the maintenance of turgor helps to maintain water uptake under water deficit conditions at low temperatures.Sugar and K were the major osmotic contributors in orchardgrass leaves. Sugar and Ca concentrations increased and Mg and P concentrations decreased at cold temperatures. K concentration increased in six cultivars and decreased in nine others at cold temperatures. Sugar concentration in cell sap was negatively correlated with osmotic potential. It was concluded that seasonal changes in CMS may be mainly associated with the osmotic potential of the leaf tissues.

1990 ◽  
Vol 115 (1) ◽  
pp. 63-66 ◽  
Author(s):  
G. S. Premachandra ◽  
H. Saneoka ◽  
S. Ogata

SUMMARYFour soyabean cultivars were grown with two N application rates (50 and 300 kg N/ha) in the field at Hiroshima University, Japan, from June to August 1988. Cell membrane stability (CMS) by the polyethylene glycol (PEG) test, leaf water relations and nutrient concentrations in cell sap and leaf tissues were measured when the plants were 50 days old, in the uppermost fully expanded leaves.Cell membrane stability was higher at the higher N rate, the increase over the lower rate being greater in the cultivars Lee+ and Lee–than in Tamahomare and T201. Leaf water potential was not affected by the higher rate of N application. Osmotic adjustment, which was independent of water stress, was observed with the higher rate of N and it was higher in Lee + and Lee–than in Tamahomare and T201. It is suggested that osmotic potential in leaf tissues may influence CMS measured by the PEG test. Solute concentrations in cell sap and leaf tissues were higher at the higher N rate. Sugar and K were the major contributors to osmotic potential.


1987 ◽  
Vol 109 (3) ◽  
pp. 437-444 ◽  
Author(s):  
Kay F. Brown ◽  
M. McGowan ◽  
M. J. Armstrong

SummaryFor many field-grown crops, including sugar beet, there is little information on the seasonal changes in leaf water potential and its components as the soil dries. Therefore, seasonal changes in leaf water, osmotic and turgor potentials of sugar beet were measured in two seasons, in crops that experienced differing degrees of soil moisture stress. In 1983 potentials of crops exposed to early and late droughts were compared with those of irrigated crops, and in 1984 measurements were made in a non-irrigated crop. In the irrigated crop the midday leaf water potential changed little during the season, except in response to fluctuating evaporative demand. In the drought and non-irrigated treatments there was a sharp fall in leaf water potential as soon as the soil water potential decreased. The size of the midday leaf water potential was primarily determined by soil dryness. However, the leaf water potential did not decrease below about — 1·5 MPa in either year. The leaf osmotic potential declined at the same time as the leaf water potential, but the extent to which this happened differed in the two years. Only in the 1984 non-irrigated crop did the osmotic potential continue to decrease as the soil dried, suggesting that osmotic adjustment had taken place in 1984 but not in 1983. Thus higher turgor was maintained in the 1984 crop than in the 1983 drought-affected crops. Some turgors were recorded as apparently negative in 1983.Since the leaf water potential declined to a minimum of about — 1·5 MPa, the soil water potential minima were also about — 1·5 MPa. However, deeper soil was not dried to this extent, suggesting that the extra resistance for water uptake from deep soil was limiting or the rooting density was too low.The pattern of recovery of leaf water potential overnight suggested that the rhizosphere resistance to water movement was small, even as the soil dried. However, measurement of stem water potentials in 1984 indicated that a significant resistance to water flow existed within the aerial part of sugar beet plants. This shows that the use of the water potential in leaves as an estimate of that in stems or roots can be misleading.


1990 ◽  
Vol 59 (2) ◽  
pp. 354-358 ◽  
Author(s):  
Gnanasiri S. PREMACHANDRA ◽  
Hirohumi SANEOKA ◽  
Hideaki MATSUURA ◽  
Shoitsu OGATA

1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


Sign in / Sign up

Export Citation Format

Share Document