Predicting sodification of calcium-saturated soil columns on leaching with sodic waters

1988 ◽  
Vol 111 (1) ◽  
pp. 159-163 ◽  
Author(s):  
R. S. Siyag ◽  
M. S. Lamba ◽  
Raj Pal ◽  
S. R. Poonia

SummaryDepth accumulation of exchangeable Na+ was measured in Ca-saturated sandy loam soil columns (length 50 cm; diameter 5 cm) after percolating 500, 1000, 1500 and 2000 ml of 013 M Na+, as NaCl, NaHCO3, Na2SO4 and Na2CO3 solutions. The values of exchangeable sodium percentage (ESP) increased gradually with the increase in the volumes of the solution percolated. Two conceptual layer models, based on whether solutions were added to the topmost soil layer in one lot (M-I) or in splits equal to the saturation deficit (M-II), were used to predict the depth distribution of ESP of soil. The chemical processes considered in the models were the formation of ion pairs and the exchange equilibria of Na+ and Ca2+. The predicted values of ESP were considerably higher for model M-II than model M-I. The consideration of ion-pair formation and the accompanying anion had only negligible effect on the predicted ESP. The model M-II over-predicted the experimental ESP throughout the soil columns, whereas the model M-I under-predicted it for the upper layer(s) and over-predicted for the lower layers. On the basis of average ESP of the whole columns, the less realistic model M-I predicted experimental results better than model M-II. This was attributed to the presence of mobile and immobile zones for the flowing solutions.

2004 ◽  
Vol 3 (1) ◽  
pp. 316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

1985 ◽  
Vol 17 (10) ◽  
pp. 197-199 ◽  
Author(s):  
P. H. Jørgensen

In two different unsaturated soil columns percolated with artificial rainwater under simulated aerated conditions, transport of coxsackievirus B3 and adenovirus 1 below 3.5 cm under the soil surface could not be demonstrated. The viruses were applied to the columns as seeded sewage sludge. Under saturated conditions transport of water-suspended coxsackievirus B3 was faster in a soil column with sandy loam soil than in a diluvial sand column.


Weed Science ◽  
1977 ◽  
Vol 25 (4) ◽  
pp. 304-308 ◽  
Author(s):  
F.E. Brockman ◽  
W.B. Duke

The degradation and leaching of methazole [2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione] and metabolites in Elmwood sandy loam soil over time in response to average spring environmental conditions was studied by using soil columns placed on a rainfall simulator in an environmental growth chamber. Methazole was degraded to 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3-(3,4-dichlorophenyl) urea (DCPU) over a 6-week period following methazole application, during which the soil columns received simulated rainfall of 1.27 cm every fourth day. Methazole level decreased to 27% of the original amount while DCPMU and DCPU levels increased to 53% and 1%, respectively. Of the total radioactivity remaining in the soil columns after 44 days and after 14 cm rainfall, approximately 80% remained above a depth of 6.35 mm.


1981 ◽  
Vol 17 (2) ◽  
pp. 157-162 ◽  
Author(s):  
R. D. Misra ◽  
P. C. Pant

SUMMARYA field experiment evaluating criteria for scheduling wheat irrigation was conducted from 1975 to 1977 in a sandy loam soil with treatments scheduled according to physiological stages, soil moisture conditions, pan evaporation and leaf water potential. Grain and straw yields, spikes/m, fertile spikelets/spike and number and weight of grains/spike were significantly influenced by treatments. Irrigation based on leaf water potential was as good as when based on physiological stages or soil moisture, and the use of pan evaporation was no better than other methods of scheduling.


2015 ◽  
Vol 7 (1) ◽  
pp. 63-89 ◽  
Author(s):  
S. H. R. Sadeghi ◽  
L. Gholami ◽  
M. Homaee ◽  
A. Khaledi Darvishan

Abstract. Although various organic and inorganic mulches are used for soil conservation purposes, the comparative effectiveness of them on soil characteristics has not been comprehensively considered from different aspects. The present study is therefore an attempt to determine the efficiency of straw mulch, manure and TA-200 polyacrylamide with respective rates of 500, 300 and 50 g m-2, respectively, in changing sediment concentration and soil loss. The experiments were conducted for sandy-loam soil (collected from the top 0–20 cm-layer) taken from a summer rangeland, the Alborz Mountains, Northern Iran under laboratory conditions with simulated rainfall intensities of 30, 50, 70 and 90 mm h-1 and the slope of 30%. The results showed that the straw mulch decreased soil concentration at rate of 45.60% compared to the control plots, and performed better than manure (8.98% reduction) and PAM (4.74% reduction). The results showed that the maximum reduction in sediment concentration and soil loss for all soil amendments occurred in the rainfall intensity of 90 mm h-1 with the rates of 58.69 and 63.24%, for straw mulch, 14.65 and 13.14%, for manure and 20.15 and 23.44% for TA-200, respectively.


Weed Science ◽  
1975 ◽  
Vol 23 (6) ◽  
pp. 454-457 ◽  
Author(s):  
Chu-Huang Wu ◽  
Normie Buehring ◽  
J. M. Davidson ◽  
P. W. Santelmann

Soil columns and soil thin-layer chromatography were used to evaluate the mobility of napropamide [2-(α-naphthoxy)-N,N,-diethylpropionamide] in various soils. The surface-applied herbicide did not move deeper than approximately 6 cm in a Teller sandy loam soil after a water application of 10.2 cm. The Rfvalues for napropamide and two reference herbicides were in the order of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] > napropamide > terbutryn [2-(tert-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine]. The mobility of each herbicide was reduced with an increase in clay and organic matter content. Carbon-14 ring labeled napropamide was used to determine the adsorption and desorption characteristics of the herbicide in various soils. The Rfvalues obtained with napropamide and each soil agreed with the adsorptive characteristics. Small applications of a muck soil to a sand (2%, w/w) significantly increased herbicide adsorption and decreased herbicide desorption.


1994 ◽  
Vol 18 (1) ◽  
pp. 24-28 ◽  
Author(s):  
T. W. Reisinger ◽  
D. B. Powell ◽  
W. M. Aust ◽  
R. G. Oderwald

Abstract The effect on residual tree growth 5 yr after soil rutting caused by a mechanized thinning system operating during wet soil conditions was examined in a natural loblolly pine stand. No significant differences were observed when the physical characteristics of the surface 2 in. of sandy loam soil on skidding corridors and untrafficked areas were compared. Diameter growth in the 0-6 ft zone adjacent to corridors was significantly better than the growth observed in the >12 ft zone, but comparisons of other tree characteristics were not significant. Although not recommended, shallow rutting of corridors when soil conditions are wet may not necessarily be detrimental to overall site productivity in spite of the visual impressions immediately after harvesting. South. J. Appl. For. 18(1):24-28.


1998 ◽  
Vol 27 (6) ◽  
pp. 1495-1503 ◽  
Author(s):  
H. Jonge ◽  
O. H. Jacobsen ◽  
L. W. Jonge ◽  
P. Moldrup

Weed Science ◽  
1999 ◽  
Vol 47 (3) ◽  
pp. 349-352 ◽  
Author(s):  
Chris H. Tingle ◽  
David R. Shaw ◽  
Patrick D. Gerard

Laboratory studies were conducted to evaluate14C-flumetsulam mobility in two Mississippi soils of varied texture and organic matter content following delays in irrigation. Mobility was evaluated using packed soil columns, 25 cm deep, under unsaturated–saturated flow conditions. Irrigation timings included 0, 3, and 5 d after flumetsulam application. Flumetsulam mobility (defined as the amount collected in leachate) decreased from 45% to no more than 20% of the applied in the Prentiss sandy loam soil when irrigation was delayed 3 or 5 d. With the Okolona soil, flumetsulam recovery in the leachate was 21, 14, and 6%, respectively when irrigation occurred 0, 3, and 5 d after application. Flumetsulam proved to be mobile when irrigation immediately followed application, with 6 to 45% recovered in the leachate from all soils evaluated. The Prentiss soil retained 6% of the applied flumetsulam in the upper 5 cm and the Okolona soil retained 22% when irrigation immediately followed flumetsulam application. When the irrigation interval was delayed at least 3 d, the Okolona soil retained 40% in the upper 5 cm, whereas the Prentiss soil retained 10%. Flumetsulam mobility was dependent on irrigation timing and soil type.


2004 ◽  
Vol 3 (1) ◽  
pp. 316-316
Author(s):  
M. Saleem Akhtar ◽  
Tammo S. Steenhuis ◽  
Brian K. Richards ◽  
Murray B. McBride

Sign in / Sign up

Export Citation Format

Share Document