Oestrous cycle synchronization and oestrus induction in indigenous and European cattle in Tanzania

1973 ◽  
Vol 81 (3) ◽  
pp. 381-389 ◽  
Author(s):  
H. Schmidt ◽  
W. Jöchle ◽  
D. Smidt

SUMMARYFrom 1969 to 1971, 743 animals (indigenous Zebu and European dairy cattle, lactating or dry cows and heifers) received oestrous cycle synchronization treatments at government-owned and private ranches and farms in the Tanzanian highlands (West Kilimanjaro); 445 matching animals served as controls. Treatment schedules consisted of chlormadinone acetate (CAP) given daily for 14 days (10 mg/day) orally; or a single CAP injection (50 mg) followed by 4 or 5 days of oral treatment (10 mg/day) 9–12 or 11–15 days later. In addition, some groups received either estradiol valerate (5 mg) together with the CAP injection, or 10 mg/day mestranol from day 11 to 15, together with CAP; one treatment group received 1000 i.u. of HCG after the last CAP medication and were inseminated 12 and 24 h thereafter. Animals were either inseminated or bred naturally. With all treatment schedules, good synchronization, unimpaired fertility and consistently a significant reduction of anoestrus was achieved. Oestrogen treatments had no effects; treatment with 1000 i.u. of HCG was unsuccessful. Management factors, food supply and phase of reproductive life had significant impacts on treatment success and fertility. Synchronization can be used successfully under a wide range of management conditions to unfold existing potentials of artificial insemination in Bos indicus and Bos taurus in the tropics.

1973 ◽  
Vol 80 (2) ◽  
pp. 329-340 ◽  
Author(s):  
W. Jöchle ◽  
M. A. Hidalgo ◽  
T. Giménez ◽  
R. Garcia C.

SummaryBetween March and August 1968 to 1970, Chlormadinone acetate (CAP), 10 mg/head/ day, was administered to 668 Zebu cows and heifers for oestrous cycle synchronization for 14, 12, or 9 days, the latter schedule supported by an injection of 5 mg estradiol valerate on day 2 to achieve luteolysis. Applied orally over a period of 14 days, CAP provided a reliable method for cycle synchronization. The severe anoestrous rate experienced in all herds reduced the overall percentage of synchronized animals. Fertility from insemination during the first synchronization period (day 2 to 10 after treatment) was slightly, yet insignificantly reduced, but was completely restored during the second synchronization period (day 20–30). Insemination only during this second synchronization period resulted in conception and pregnancy rates similar to those combined from the first and second synchronization period.Of factors tested for influencing synchronization and fertility, presence or absence of penis-deviated teaser bulls (psycho-stimulation) had no effect on the percentage of animals synchronized, or on post-treatment fertility. In well-managed herds, the percentage of animals responding to treatment was predetermined by the number of animals already cycling, reflecting their phase of reproductive life. Levels of management had an important impact on the success of cycle synchronization combined with artificial insemination. Both methods are managerial tools for improvement of already good management. Their failure under insufficient management conditions has diagnostic value.Possibilities and limits shown for oestrous cycle synchronization in Zebu cattle were similar to those reported in European cattle. Within these limits, CAP can be employed successfully as a means for cycle synchronization, providing sufficient synchronization and acceptable fertility and allowing economical use of artificial insemination.


2021 ◽  
Author(s):  
James A. Ward ◽  
Gillian P. McHugo ◽  
Michael J. Dover ◽  
Thomas J. Hall ◽  
Said Ismael Ng’ang’a ◽  
...  

AbstractDomestic cattle have a key economic role in African societies, providing an important source of mobile wealth through supply of meat, milk, cowhide, fuel, transport, and traction. The phenotypic diversity of African cattle reflects adaptation to a wide range of agroecological conditions and complex patterns of admixture between the humpless Bos taurus (taurine) and humped Bos indicus (zebu) subspecies, which share a common ancestor 150-500 thousand years ago. Human migration and trade from Asia have left a peak of zebu nuclear ancestry in East Africa and most cattle populations across the continent have a hybrid genetic composition. Notwithstanding this, all African cattle possess taurine mitochondrial haplotypes, even populations with significant zebu nuclear ancestry. In this regard, the efficient functioning of the mitochondrion relies on a network of biochemical interactions between the products of 37 mitochondrial genes and more than one thousand nuclear genes; therefore, admixed African cattle represent ideal populations for evaluating mitonuclear interactions and mismatch between the nuclear and mitochondrial genomes. Using high-density SNP array data from 18 different cattle populations, including ten African admixed breeds, we find strong evidence for mitonuclear coevolution in hybrid African cattle with significant retention of Bos taurus alleles at mitochondrially-targeted nuclear genes, particularly those genes with products that directly interact with mtDNA-encoded protein subunits in OXPHOS and ribosomal complexes, or that have functions in mtDNA replication. We also show that subspecific local ancestry varies substantially across the genomes of admixed populations, with a marked signal of taurine ancestry at the major histocompatibility (MHC) gene cluster, which likely reflects adaptation to infectious disease challenges facing African livestock. Our results demonstrate that African admixed cattle represent an excellent comparative model for studying the phenotypic consequences of mitonuclear mismatch and genomic introgression in humans and other large mammals.


2020 ◽  
Vol 240 ◽  
pp. 104154
Author(s):  
Víctor Hugo Severino-Lendechy ◽  
Felipe Montiel-Palacios ◽  
Concepción Ahuja-Aguirre ◽  
Jorge Alonso Peralta-Torres ◽  
José Candelario Segura-Correa

1973 ◽  
Vol 36 (4) ◽  
pp. 644-652 ◽  
Author(s):  
L. Lemka ◽  
R. E. McDowell ◽  
L. D. Van Vleck ◽  
H. Guha ◽  
J. J. Salazar

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cuili Pan ◽  
Zhaoxiong Lei ◽  
Shuzhe Wang ◽  
Xingping Wang ◽  
Dawei Wei ◽  
...  

Abstract Background Cyclin-dependent kinases (CDKs) are protein kinases regulating important cellular processes such as cell cycle and transcription. Many CDK genes also play a critical role during adipogenic differentiation, but the role of CDK gene family in regulating bovine adipocyte differentiation has not been studied. Therefore, the present study aims to characterize the CDK gene family in bovine and study their expression pattern during adipocyte differentiation. Results We performed a genome-wide analysis and identified a number of CDK genes in several bovine species. The CDK genes were classified into 8 subfamilies through phylogenetic analysis. We found that 25 bovine CDK genes were distributed in 16 different chromosomes. Collinearity analysis revealed that the CDK gene family in Bos taurus is homologous with Bos indicus, Hybrid-Bos taurus, Hybrid Bos indicus, Bos grunniens and Bubalus bubalis. Several CDK genes had higher expression levels in preadipocytes than in differentiated adipocytes, as shown by RNA-seq analysis and qPCR, suggesting a role in the growth of emerging lipid droplets. Conclusion In this research, 185 CDK genes were identified and grouped into eight distinct clades in Bovidae, showing extensively homology. Global expression analysis of different bovine tissues and specific expression analysis during adipocytes differentiation revealed CDK4, CDK7, CDK8, CDK9 and CDK14 may be involved in bovine adipocyte differentiation. The results provide a basis for further study to determine the roles of CDK gene family in regulating adipocyte differentiation, which is beneficial for beef quality improvement.


2021 ◽  
pp. 102998
Author(s):  
Bianca Vilela Pires ◽  
Nedenia Bonvino Stafuzza ◽  
Luara Afonso de Freitas ◽  
Maria Eugênia Zerlotti Mercadante ◽  
Ester Silveira Ramos ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 182
Author(s):  
Anna Wyrobisz-Papiewska ◽  
Jerzy Kowal ◽  
Elżbieta Łopieńska-Biernat ◽  
Paweł Nosal ◽  
Iwona Polak ◽  
...  

Ostertagia leptospicularis Assadov, 1953 was formally described in roe deer Capreolus capreolus and has been reported in a wide range of ruminants, including other Cervidae, as well as Bovidae. Nematode specimens derived from various host species exhibit morphological similarity; however, some differences can be observed. It is unclear if this is due to the differential reaction of one nematode species in different host species (i.e., host-induced changes) or because of distinct nematode species in these hosts (i.e., species complex). This paper focuses on specimens resembling O. leptospicularis f. leptospicularis and its closely related species (Ostertagia ostertagi f. ostertagi) collected from various hosts. Morphometric and molecular techniques were applied to assess host-induced changes in nematode morphology and to clarify its systematic classification. There was an overall effect of host species on measurements of nematodes resembling O. leptospicularis (both males and females), but the distinctiveness of the specimens from cattle Bos taurus were highlighted. The results obtained may suggest that the specimens of O. leptospicularis from cattle in Germany and cervids in central Europe belong to different strains. Furthermore, nematodes from the cervid strain appear to circulate within particular host species, which can be seen in the stated morphological variations.


Sign in / Sign up

Export Citation Format

Share Document