Influence of tillage systems and nitrogen management on grain yield, grain protein and nitrogen-use efficiency in UK spring wheat

2016 ◽  
Vol 154 (8) ◽  
pp. 1437-1452 ◽  
Author(s):  
K. RIAL-LOVERA ◽  
W. P. DAVIES ◽  
N. D. CANNON ◽  
J. S. CONWAY

SUMMARYEffects of soil tillage systems and nitrogen (N) fertilizer management on spring wheat yield components, grain yield and N-use efficiency (NUE) were evaluated in contrasting weather of 2013 and 2014 on a clay soil at the Royal Agricultural University's Harnhill Manor Farm, Cirencester, UK. Three tillage systems – conventional plough tillage (CT), high intensity non-inversion tillage (HINiT) and low intensity non-inversion tillage (LINiT) for seedbed preparation – were compared at four rates of N fertilizer (0, 70, 140 and 210 kg N/ha). Responses to the effects of the management practices were strongly influenced by weather conditions and varied across seasons. Grain yields were similar between LINiT and CT in 2013, while CT produced higher yields in 2014. Nitrogen fertilization effects also varied across the years with no significant effects observed on grain yield in 2013, while in 2014 applications up to 140 kg N/ha increased yield. Grain protein ranged from 10·1 to 14·5% and increased with N rate in both years. Nitrogen-use efficiency ranged from 12·6 to 49·1 kg grain per kg N fertilizer and decreased as N fertilization rate increased in both years. There was no tillage effect on NUE in 2013, while in 2014 NUE under CT was similar to LINiT and higher than HINiT. The effect of tillage and N fertilization on soil moisture and soil mineral N (SMN) fluctuated across years. In 2013, LINiT showed significantly higher soil moisture than CT, while soil moisture did not differ between tillage systems in 2014. Conventional tillage had significantly higher SMN at harvest time in 2014, while no significant differences on SMN were observed between tillage systems in 2013. These results indicate that LINiT can be used to produce similar spring wheat yield to CT on this particular soil type, if a dry cropping season is expected. Crop response to N fertilization is limited when soil residual N is higher, while in conditions of lower residual SMN, a higher N supply is needed to increase yield and improve grain protein content.

2020 ◽  
Vol 12 (5) ◽  
pp. 1735 ◽  
Author(s):  
Aixia Xu ◽  
Lingling Li ◽  
Junhong Xie ◽  
Xingzheng Wang ◽  
Jeffrey A. Coulter ◽  
...  

Nitrogen (N) fertilizer plays an important role in wheat yield, but N application rates vary greatly, and there is a lack of data to quantify the residual effects of N fertilization on soil N availability. A 17-yr experiment was conducted in a semiarid area of the Loess Plateau of China to assess the effects of N fertilization on spring wheat (Triticum aestivum L.) grain yield, N uptake, N utilization efficiency, and residual soil nitrate. Treatments included a non-N-fertilized control and annual application of 52.5, 105.0, 157.5, and 210.0 kg N ha−1 in the first two years (2003 and 2004). In the third year (2005), the four main plots with N fertilizer application were split. In one subplot, N fertilization was continued as mentioned previously, while in the other subplot, N fertilization was stopped. The concentration of NO3-N in the 0–110 cm depth soil layers was significantly affected by N application, with higher N rates associated with greater soil NO3-N concentration. With the annual application of N over 17 years, residual soil NO3-N concentration in the 100–200 cm soil layer in the last study year was significantly greater than that in the non-N-fertilized control and was increased with rate of N application. There was a significant positive relationship of soil NO3-N in the 0–50 cm and 50–110 cm soil layers at wheat sowing with wheat grain N content and yield. Wheat grain yield in the third year (2005) was significantly, i.e., 22.57–59.53%, greater than the unfertilized treatment after the N application was stopped. Nitrogen use efficiency decreased in response to each increment of added N fertilizer, and was directly related to N harvest index and grain yield. Therefore, greater utilization of residual soil N through appropriate N fertilizer rates could enhance nitrogen use efficiency while reducing the cost of crop production and risk of N losses to the environment. For these concerns, optimum N fertilizer application rate for spring wheat in semiarid Loess Plateau is about 105 kg N ha−1, which is below the threshold value of 170 kg N ha−1 per year as defined by most EU countries.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1391
Author(s):  
Xizi Wang ◽  
Svend Christensen ◽  
Jesper Svensgaard ◽  
Signe M. Jensen ◽  
Fulai Liu

There is an urgent need among plant breeders for a deeper understanding of the links between wheat genotypes and their ability to utilize light for biomass production and their efficiency at converting the biomass into grain yield. This field trail was conducted to investigate the variations in radiation use efficiency (RUE) and harvest index (HI) of four spring wheat cultivars grown on two soil types with two nitrogen (N) fertilization levels. Grain yield (GY) was significantly higher with 200 kg N ha−1 than 100 kg N ha−1 and on clay soil than on sandy soil, and a similar trend was observed for shoot dry matter (DM) at maturity. RUE and HI was neither affected by cultivar nor N-fertilization, but was affected by soil type, with a significantly higher RUE and HI on clay than on sandy soil. The differences of water holding capacity between the two soil types was suggested to be a major factor influencing RUE and HI as exemplified by the principal component analysis. Thus, to achieve a high RUE and/or HI, sustaining a good soil water status during the critical growth stages of wheat crops is essential, especially on sandy soils with a low water holding capacity.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1252
Author(s):  
Lin Li ◽  
Zheng Zhang ◽  
Hua Tian ◽  
Zhaowen Mo ◽  
Umair Ashraf ◽  
...  

Mechanical pot-seedling transplanting (PST) is an efficient transplanting method and deep nitrogen fertilization has the advantage of increasing nitrogen use efficiency. However, little information is available about the effect of PST when coupled with mechanized deep nitrogen (N) fertilization on grain yield, nitrogen use efficiency, and antioxidant enzyme activities in rice. A two-year field experiment was performed to evaluate the effect of PST coupled with deep N fertilization in both early seasons (March–July) of 2018 and 2019. All seedlings were transplanted by PST and three treatments were designed as follows. There was a mechanized deep placement of all fertilizer (MAF), broadcasting fertilizer (BF), no fertilizer (N0). MAF significantly increased grain yield by 52.7%. Total nitrogen accumulation (TNA) was enhanced by 27.7%, nitrogen partial factor productivity (NPFP) was enhanced by 51.4%. nitrogen recovery efficiency (NRE) by 123.7%, and nitrogen agronomic efficiency (NAE) was enhanced by 104.3%, compared with BF treatment. Moreover, MAF significantly improved peroxidase (POD), catalase (CAT), and notably reduced the malonic dialdehyde (MDA) content for both rice cultivars, compared to BF. Hence, the result shows that mechanical pot-seedling transplanting coupled with nitrogen deep placement is an efficient method with the increase of grain yield and nitrogen use efficiency in rice cultivation in South China.


2013 ◽  
Vol 807-809 ◽  
pp. 839-842
Author(s):  
Xiao Gang Liu ◽  
Xin Le Wang ◽  
Qi Liang Yang ◽  
Fu Cang Zhang

The objective of this study is to explore the best coupling form of water and nitrogen in arid areas of northwest China. Field experiment was conducted in the oasis region of Shiyang River Basin, and the interactive impact of water and nitrogen nutrition on use of water and nitrogen of spring wheat was investigated. The results showed that nitrogen rate and irrigation in jointing and heading stages impacted on spring wheat yield remarkably. With nitrogen rate (168 kg/hm2), irrigation (90 mm) in jointing stage, and irrigation (70 mm) in heading stage, grain yield was higher. Water use efficiency would be high, when the irrigation in tillering and filling stages both were 30 mm. Soil mineral nitrogen accumulation was mainly nitrate nitrogen, which was positively correlated with nitrogen rate in earlier stage. Nitrogen rate and irrigation in jointing and filling stage impacted on plant nitrogen accumulation remarkably, plant nitrogen accumulation came to maximum when nitrogen rate (168 kg/hm2), irrigation (90 mm) in jointing stage and irrigation (70 mm) in filling stage were applied. And nitrogen use efficiency came to maximum under nitrogen rate (56 kg/hm2), irrigation (90 mm) in jointing stage. Considering high grain yield and use of water and nitrogen, the primary suggestion on mode of irrigation and nitrogen rate of spring wheat in Shiyang River Basin were nitrogen rate (168 kg/hm2), irrigation (90 mm) in jointing stage and irrigation (70 mm) in tillering, heading and filling stages.


2017 ◽  
Vol 155 (9) ◽  
pp. 1407-1423 ◽  
Author(s):  
E. MANSOUR ◽  
A. M. A. MERWAD ◽  
M. A. T. YASIN ◽  
M. I. E. ABDUL-HAMID ◽  
E. E. A. EL-SOBKY ◽  
...  

SUMMARYAgricultural practices are likely to lower nitrogen (N) fertilization inputs for economic and ecological limitation reasons. The objective of the current study was to assess genotypic variation in nitrogen use efficiency (NUE) and related parameters of spring wheat (Triticum aestivumL.) as well as the relative grain yield performance under sandy soil conditions. A sub-set of 16 spring wheat genotypes was studied over 2 years at five N levels (0, 70, 140, 210 and 280 kg N/ha). Results indicated significant differences among genotypes and N levels for grain yield and yield components as well as NUE. Genotypes with high NUE exhibited higher plant biomass, grain and straw N concentration and grain yield than those with medium and low NUE. Utilization efficiency (grain-NUtE) was more important than uptake efficiency (total NUpE) in association with grain yield. Nitrogen supply was found to have a substantial effect on genotype; Line 6052 as well as Shandawel 1, Gemmiza 10, Gemmiza 12, Line 6078 and Line 6083 showed higher net assimilation rate, more productive tillers, increased number of spikes per unit area and grains per spike, extensive N concentration in grain and straw, heavier grains, higher biological yield and consequently maximized grain yield. The relative importance of NUE-associated parameters such as nitrogen agronomic efficiency, nitrogen physiological efficiency and apparent nitrogen recovery as potential targets in breeding programmes for increased NUE genotypes is also mentioned.


2012 ◽  
Vol 92 (5) ◽  
pp. 847-856 ◽  
Author(s):  
José Luis Velasco ◽  
Hernán Sainz Rozas ◽  
Hernán Eduardo Echeverría ◽  
Pablo Andrés Barbieri

Velasco, J. L., Rozas, H. S., Echeverría, H. E. and Barbieri, P. A. 2012. Optimizing fertilizer nitrogen use efficiency by intensively managed spring wheat in humid regions: Effect of split application. Can. J. Plant Sci. 92: 847–856. Efficient N fertilizer management is critical for the economical production of wheat and the long-term protection of the environment. Six experiments were conducted at three locations in the south-east of the province of Buenos Aires (SE), Argentina, during a 4-yr period, on Typic Argiudoll and Petrocalcic Paleudoll. The study was designed to evaluate the effects of splitting nitrogen (N) fertilizer on N use efficiency (NUE) in wheat (Triticum aestivum L.). Rates of 0 to 150 kg N ha−1were used, applied at tillering (Z24) or split between Z24 and flag leaf (Z39). The experimental design was a randomized complete block with three replications. Grain yield ranged from 3522 to 8185 kg ha−1, according to N availability and application time. In the experiments without water stress (three out of six), average grain yield (across experiments) was 6669 and 6989 kg ha−1for full and split fertilization, respectively. In four out of six experiments, average N in above-ground biomass (NAB), N recovery fraction (NRF), and grain protein content (GPC) for split N application were greater than for full N at Z24 (NAB, 176 and 157 kg N ha−1; NRF, 66 and 51%; GPC, 100 and 92 g kg−1, for split and full N application, respectively). In years without water stress, splitting N between Z24 and Z39 is an appropriate strategy to improve NRF, reducing N losses, and minimizing the environmental impact of fertilization.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Izzat Sidahmed Ali Tahir ◽  
Elfadil Mohamed Elyayeb Elbashier ◽  
Mohamed Ahmed Salih Ibrahim ◽  
Abu Sefyan Ibrahim Saad ◽  
Osman Suliman Abdalla

Improved nitrogen use-efficient cultivars could be the most economically beneficial and environmentally friendly approach to reduce pollution associated with excessive N fertilization. The performance and genetic gain in grain yield and nitrogen use efficiency (NUE) of a historical set of 12 bread wheat cultivars released for a heat-stressed environment were investigated at four N levels (0 (N0), 43 (N43), 86 (N86), and 129 (N129) kg/ha) for two seasons. Averaged across seasons, increasing N level from N0 to N43, N86, and N129 resulted in yield increases ranging from 4−45%, 13–69%, and 34–87% at N43, N86, and N129, respectively. These yield increases were associated with increases in biomass (r = 0.86, P<0.01). Regressing grain yield of cultivars released during 1960 to 2006 against the year of release showed no trend at N0 and positive nonsignificant trends at N43;. however, significant positive trends were found at N86 and N129 with genetic gain rates of 12.65 and 15.76 kg ha−1 year−1, respectively. This gain was associated with progresses in harvest index (HI) at N43, N86, and N129 but not at N0. On the other hand, during the period from 1960 to 1990, the genetic gain in grain yield at N86 was 24.5 kg ha−1 year−1. Regressing NUE against the year of release showed significant linear trends at N86 and N129 (R2 = 0.511 and R2 = 0.477, respectively), but not at N43. The results indicate that breeders improved grain yield and NUE over 46 years under the heat-stressed environment of Sudan although the rate of increase in yield has been slowed down in recent years. Further improvement in NUE might require broadening the genetic diversity and simultaneous evaluation at low and high N levels.


2010 ◽  
Vol 90 (4) ◽  
pp. 489-497 ◽  
Author(s):  
H W Cutforth ◽  
P G Jefferson ◽  
C A Campbell ◽  
R H Ljunggren

In the semiarid prairie of western Canada, there is renewed interest for including short durations (≤3 yr) of perennial forage in rotations with annual crops. However, there are producers who want to grow longer durations (≥4 yr) of perennial forages in rotational systems. Therefore, we assessed spring wheat (Triticum aestivum L.) yield, grain protein, and water use efficiency following 6 yr of either crested wheatgrass [Agropyron cristatum (L.) Gaertn.], or alfalfa (Medicago sativa L.), or wheat, and then 1 yr of fallow. Yield, water use, and water use efficiency were significantly lower in the first year of spring wheat production (2000) when the prior crop was crested wheatgrass or alfalfa than when it was wheat. In the second year (2001), which was a near record drought year, wheat yield and water use were significantly lower when the prior crop was alfalfa than when it was grass or wheat. From 2002 to 2005, there were no consistent differences in water use, water use efficiency, or yield of wheat due to the prior perennial crop. Wheat grain protein concentration was significantly higher following alfalfa compared with following crested wheatgrass or continuous spring wheat from 2000 to 2005. This effect was attributed to the higher N-supplying power of the soil following alfalfa. Soil water content below the rooting depth of most annual crops (≥120 cm depth) was reduced by the prior alfalfa crop, and there was no evidence from 2000 to 2005 that soil water recharge was occurring below the 150-cm depth. Key words: Semiarid prairie, alfalfa, grass, spring wheat, yield, protein, water use


Sign in / Sign up

Export Citation Format

Share Document