Isolation, preparation and the amino acid composition of 4 milk-fat globule membrane proteins solubilized by treatment with sodium dodecyl sulphate

1976 ◽  
Vol 43 (3) ◽  
pp. 401-409 ◽  
Author(s):  
T. E. Cawston ◽  
M. Anderson ◽  
G. C. Cheeseman

SummaryMilk-fat globule membrane (MFGM) proteins were solubilized by treatment with SDS. Four of the major proteins were isolated as SDS complexes using column chromatography. The purity of each isolate was determined by SDS polyacrylamide gel electrophoresis and sufficient of each protein was obtained for amino acid analysis. The amino acid compositions of the isolated MFGM proteins and a total MFGM protein extract were determined. Differences in amino acid composition were found in particular between the major MFGM glycoprotein and the other 3 membrane proteins. The relationships of the amino acid composition to protein properties and structure are discussed.

1976 ◽  
Vol 43 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Sukhminder Singh ◽  
N. C. Ganguli

SummaryChemical analyses, polyacrylamide-gel electrophoresis and isoelectric focusing of milk-fat globule membrane proteins (FGMP) obtained from the milk of 2 Murrah buffaloes were done to determine if any change in composition occurred during lactation. Changes in the levels of sialic acid, hexose, hexosamine, N and P were found in the FGMP obtained at different stages of lactation. On the day of parturition, 8 major proteins in FGMP were determined by sodium dodecyl sulphate polyacrylamide-gel electrophoresis whereas 6 major proteins were obtained in FGMP of middle and late lactation milks. Isoelectric focusing of FGMP showed 8–9, 9–13 and 13–16 proteins from colostrum, middle and late lactation milks, respectively and the isoelectric pH of the proteins varied from 5·25 to 7·80, 5·85 to 8·30 and 5·75 to 8·61 respectively.


1981 ◽  
Vol 193 (1) ◽  
pp. 47-54 ◽  
Author(s):  
A Imam ◽  
D J R Laurence ◽  
A M Neville

A major periodate–Schiff-positive component from milk-fat-globule membrane of human breast milk has been purified by selectively extracting the membrane glycoproteins, followed by lectin affinity chromatography and gel filtration on Sephadex G-200 in the presence of protein-dissociating agents. The purified glycoprotein, termed epithelial membrane glycoprotein (EMGP-70), has an estimated mol.wt. of 70 000 and yields a single band under reducing conditions on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The glycoprotein contains 13.5% carbohydrate by weight, with fucose, mannose, galactose, N-acetylglucosamine and sialic acid 17.2, 17.0, 21.1, 7.9 and 36.6% respectively of the carbohydrate moiety. Aspartic and glutamic acid and serine are the major amino acid residues.


1985 ◽  
Vol 228 (1) ◽  
pp. 233-240 ◽  
Author(s):  
D E Greenwalt ◽  
V G Johnson ◽  
I H Mather

We recently described the tissue distribution of PAS IV (periodic acid/Schiff-positive Band IV), a hydrophobic glycoprotein isolated from bovine milk-fat-globule membrane [Greenwalt & Mather (1985) J. Cell Biol. 100, 397-408]. By using immunofluorescence techniques, PAS IV was detected in mammary epithelial cells, the bronchiolar epithelium of lung, and the capillary endothelium of several tissues, including heart, salivary gland, pancreas, spleen and intestine. In the present paper we describe the specificity of the antibodies used for these studies. Two monoclonal antibodies, E-1 and E-3, were shown by solid-phase immunoassay and immunoaffinity chromatography to be specific for PAS IV (of Mr 76000) in milk-fat-globule membrane and recognize a glycoprotein of slightly higher Mr (85000) in heart. Affinity-purified rabbit antibodies to PAS IV were also shown to recognize components of Mr 76000 and 85000 in fat-globule membrane and heart respectively, by using immunoblotting procedures after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Additionally, an immunoreactive protein in lung of Mr 85000 was detected. Despite these differences in molecular size, the fat-globule membrane and heart forms of PAS IV were shown to be very similar by peptide-mapping techniques. The possible significance of the expression of similar forms of PAS IV in both epithelial and capillary endothelial cells is briefly discussed.


2002 ◽  
Vol 69 (4) ◽  
pp. 555-567 ◽  
Author(s):  
SUNG JE LEE ◽  
JOHN W. SHERBON

The effects of heat treatment and homogenization of whole milk on chemical changes in the milk fat globule membrane (MFGM) were investigated. Heating at 80 °C for 3–18 min caused an incorporation of whey proteins, especially β-lactoglobulin (β-lg), into MFGM, thus increasing the protein content of the membrane and decreasing the lipid. SDS-PAGE showed that membrane glycoproteins, such as PAS-6 and PAS-7, had disappeared or were weakly stained in the gel due to heating of the milk. Heating also decreased free sulphydryl (SH) groups in the MFGM and increased disulphide (SS) groups, suggesting that incorporation of β-lg might be due to association with membrane proteins via disulphide bonds. In contrast, homogenization caused an adsorption of caseins to the MFGM but no binding of whey proteins to the MFGM without heating. Binding of caseins and whey proteins and loss of membrane proteins were not significantly different between milk samples that were homogenized before and after heating. Viscosity of whole milk was increased when milk was treated with both homogenization and heating.


1978 ◽  
Vol 173 (2) ◽  
pp. 633-641 ◽  
Author(s):  
R K Craig ◽  
D McIlreavy ◽  
R L Hall

1. Guinea-pig caseins A, B and C were purified free of each other by a combination of ion-exchange chromatography and gel filtration. 2. Determination of the amino acid composition showed all three caseins to contain a high proportion of proline and glutamic acid, but no cysteine. This apart, the amino acid composition of the three caseins was markedly different, though calculated divergence values suggest that some homology may exist between caseins A and B. Molecular-weight estimates based on amino acid composition were in good agreement with those based on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. N-Terminal analysis showed lysine, methionine and lysine to be the N-terminal residues of caseins A, B and C respectively. 4. Two-dimensional separation of tryptic digests revealed a distinctive pattern for each casein. 5. All caseins were shown to be phosphoproteins. The casein C preparation also contained significant amounts of sialic acid, neutral and amino sugars. 6. The results suggest that each casein represents a separate gene product, and that the low-molecular-weight proteins are not the result of a post-translational cleavage of the largest. All were distinctly different from the whey protein alpha-lactalbumin.


1984 ◽  
Vol 222 (3) ◽  
pp. 701-709 ◽  
Author(s):  
R L Olsen ◽  
C Little

The subunit composition of human myeloperoxidase was studied with the use of sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration. The subunit pattern observed depended on the manner in which the enzyme was treated before analysis. Reduction before heat treatment in detergent led to two main protein species (Mr 57 000 and 10 500), whereas reduction during or after heat treatment yielded an additional species of Mr 39 000. Heating without any reductive pretreatment yielded the 39 000-Mr form as the major electrophoretic species. Carbohydrate staining showed large amounts of sugar on the 57 000-Mr species and little on the 10 500-Mr form. Significant amounts of haem were associated with this latter subunit. Haem also seemed to be associated with the 57 000-Mr form but not with the 39 000-Mr one. These three subunit forms were isolated and their amino acid composition analysed. The 57 000-Mr and 39 000-Mr forms had very similar amino acid composition and yielded an apparently identical collection of fragments on incubation with CNBr. Once separated, the subunits could not be interconverted. Generally, minor amounts of other molecular-mass forms were observed. The nature of the various molecular-mass forms originating from myeloperoxidase is discussed.


Sign in / Sign up

Export Citation Format

Share Document