Magnetohydrodynamic wakes

1963 ◽  
Vol 15 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M. B. Glauert

The most notable feature of the magnetohydrodynamic flow at large distances from a three-dimensional body is the formation of two wakes, within which vorticity and electric current are confined. In this paper results are obtained for the effective diffusivity and the relation between current and vorticity in each wake, for the balance between the strengths of the disturbances in the wakes and in the irrotational current-free flow outside, and for the lift and drag forces acting on the body. The final answers take the form of remarkably simple extensions of the corresponding formulae for non-conducting flow. In spite of the extra wake and the presence of a magnetic as well as a velocity field, the flow perturbation at large distances still has only three degrees of freedom.

Author(s):  
Oktay Baysal ◽  
Terry L. Meek

Since the goal of racing is to win and since drag is a force that the vehicle must overcome, a thorough understanding of the drag generating airflow around and through a race car is greatly desired. The external airflow contributes to most of the drag that a car experiences and most of the downforce the vehicle produces. Therefore, an estimate of the vehicle’s performance may be evaluated using a computational fluid dynamics model. First, a computer model of the race car was created from the measurements of the car obtained by using a laser triangulation system. After a computer-aided drafting model of the actual car was developed, the model was simplified by removing the tires, roof strakes, and modification of the spoiler. A mesh refinement study was performed by exploring five cases with different mesh densities. By monitoring the convergence of the computed drag coefficient, the case with 2 million elements was selected as being the baseline case. Results included flow visualization of the pressure and velocity fields and the wake in the form of streamlines and vector plots. Quantitative results included lift and drag, and the body surface pressure distribution to determine the centerline pressure coefficient. When compared with the experimental results, the computed drag forces were comparable but expectedly lower than the experimental data mainly attributable to the differences between the present model and the actual car.


1977 ◽  
Vol 99 (3) ◽  
pp. 503-509 ◽  
Author(s):  
B. E. Lee ◽  
B. F. Soliman

A study has been made of the influence of grouping parameters on the mean pressure distributions experienced by three dimensional bluff bodies immersed in a turbulent boundary layer. The range of variable parameters has included group density, group pattern and incident flow type and direction for a simple cuboid element form. The three flow regimes associated with increasing group density are reflected in both the mean drag forces acting on the body and their associated pressure distributions. A comparison of both pressure distributions and velocity profile parameters with established work on two dimensional bodies shows close agreement in identifying these flow regime changes. It is considered that the application of these results may enhance our understanding of some common flow phenomena, including turbulent flow over rough surfaces, building ventilation studies and environmental wind around buildings.


2007 ◽  
Vol 111 (1125) ◽  
pp. 699-704 ◽  
Author(s):  
G. Zhu ◽  
P. W. Bearman ◽  
J. M. R. Graham

AbstractThe present paper continues the work of Zhuet al. The closed-form expressions for the evaluation of forces on a body in compressible, viscous and rotational flow derived in the previous paper have been extended to different forms. The expressions require only a knowledge of the velocity field (and its derivatives) in a finite and arbitrarily chosen region enclosing the body. The equations are implemented on three-dimensional inviscid flows over wings and wing/body combinations. Further implementation on three-dimensional viscous flows over wings has also been investigated.


1948 ◽  
Vol 44 (3) ◽  
pp. 342-344 ◽  
Author(s):  
P. A. P. Moran

A rubber molecule containing n + 1 carbon atoms may be represented by a chain of n links of equal length such that successive links are at a fixed angle to each other but are otherwise at random. The statistical distribution of the length of the molecule, that is, the distance between the first and last carbon atoms, has been considered by various authors (Treloar (1) gives references). In particular, if the first atom is kept fixed at the origin of a system of coordinates and the chain is otherwise at random, it has been conjectured that the distribution of the (n + 1)th atom will tend, as n increases, towards a three-dimensional normal distribution of the formwhere σ depends on n. Thus r2 (= x2 + y2 + z2) will be approximately distributed as σ2χ2 with three degrees of freedom.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850066
Author(s):  
Payel Mukhopadhyay ◽  
K. Rajesh Nayak

Carter's constant is a nontrivial conserved quantity of motion of a particle moving in stationary axisymmetric spacetime. In the version of the theorem originally given by Carter, due to the presence of two Killing vectors, the system effectively has two degrees of freedom. We propose an extension to the first version of Carter's theorem to a system having three degrees of freedom to find two functionally independent Carter-like integrals of motion. We further generalize the theorem to a dynamical system with [Formula: see text] degrees of freedom. We further study the implications of Carter's constant to superintegrability and present a different approach to probe a superintegrable system. Our formalism gives another viewpoint to a superintegrable system using the simple observation of separable Hamiltonian according to Carter's criteria. We then give some examples by constructing some two-dimensional superintegrable systems based on this idea and also show that all three-dimensional simple classical superintegrable potentials are also Carter separable.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Samia Dahite ◽  
Mihai Arghir

Abstract The present work deals with the thermogasodynamic analysis of the segmented annular seal provided with Rayleigh pockets. The paper is a continuation of the work presented Arghir, M., and Mariot, A. (2017, “Theoretical Analysis of the Static Characteristics of the Carbon Segmented Seal,” ASME J. Tribol., 139(6), p. 062202.) where an isothermal model of the segmented annular seal was first presented. Each segment had three degrees-of-freedom, and its static position was obtained by solving the nonlinear equations of equilibrium. Thermal effects are now introduced by considering a simplified form of the energy equation in the thin gas film coupled with the three dimensional heat transfer in a segment of the seal and in the rotor. An efficient numerical algorithm is developed. A parametric study was performed for a segmented annular seal with pockets taken from the literature and operating with air. First, a test case proved the necessity of considering three degrees-of-freedom for the segment and not only its radial displacement. The parametric study was then performed for two different pocket depths, two pressure differences, and different rotation speeds. The results showed a non-uniform heating with larger temperatures at the leading edge of the segment where the minimal film thickness occurs. Heating is proportional to the pocket depth that lowers the lift force of the segment and to the pressure difference that closes the seal.


2018 ◽  
Vol 861 ◽  
pp. 119-137 ◽  
Author(s):  
Maziar Raissi ◽  
Zhicheng Wang ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse problem that is not straightforward to solve using standard computational fluid dynamics methods, especially since no information is provided for the pressure. An even greater challenge is to infer the lift and drag forces given some dye or smoke visualizations of the flow field. Here we employ deep neural networks that are extended to encode the incompressible Navier–Stokes equations coupled with the structure’s dynamic motion equation. In the first case, given scattered data in space–time on the velocity field and the structure’s motion, we use four coupled deep neural networks to infer very accurately the structural parameters, the entire time-dependent pressure field (with no prior training data), and reconstruct the velocity vector field and the structure’s dynamic motion. In the second case, given scattered data in space–time on a concentration field only, we use five coupled deep neural networks to infer very accurately the vector velocity field and all other quantities of interest as before. This new paradigm of inference in fluid mechanics for coupled multi-physics problems enables velocity and pressure quantification from flow snapshots in small subdomains and can be exploited for flow control applications and also for system identification.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Raymond C. Z. Cohen ◽  
Paul W. Cleary ◽  
Bruce R. Mason ◽  
David L. Pease

The connections between swimming technique and the fluid dynamical interactions they generate are important for assisting performance improvement. Computational fluid dynamics (CFD) modeling provides a controlled and unobtrusive way for understanding the fundamentals of swimming. A coupled biomechanical–smoothed particle hydrodynamics (SPH) fluid model is used to analyze the thrust and drag generation of a freestyle swimmer. The swimmer model was generated using a three-dimensional laser body scan of the athlete and digitization of multi-angle video footage. Two large distinct peaks in net streamwise thrust are found during the stroke, which coincide with the underwater arm strokes. The hand motions generate vortical structures that travel along the body toward the kicking legs and the hands are shown to produce thrust using both lift and drag. These findings advance understanding of the freestyle stroke and may be used to improve athlete technique.


2016 ◽  
Vol 39 (7) ◽  
pp. 1037-1046 ◽  
Author(s):  
Hossein Nourmohammadi ◽  
Jafar Keighobadi ◽  
Mohsen Bahrami

Biomedical applications of swimming microrobots comprising of drug delivery, microsurgery and disease monitoring make the research more interesting in MEMS technology. In this paper, inspired by the flagellar motion of microorganisms like bacteria and also considering the recent attempts in one/two-dimensional modelling of swimming microrobots, a three degrees-of-freedom swimming microrobot is developed. In the proposed design, the body of the swimming microrobot is driven by multiple prokaryotic flagella which produce a propulsion force through rotating in the fluid media. The presented swimming microrobot has the capability of doing three-dimensional manoeuvres and moving along three-dimensional reference paths. In this paper, following dynamical modelling of the microrobot motion, a suitable controller is designed for path tracking purposes. Based on the resistive-force theory, the generated propulsion force by the flagella is modelled. The feedback linearization method is applied for perfect tracking control of the swimming microrobot on the desired motion trajectories. It is seen that, by the use of three flagella, the microrobot is able to perform three-dimensional manoeuvres. From the simulation results, the tracking performance of the designed control system is perfectly guaranteed which enables the microrobot to perform the desired three-dimensional manoeuvres and follow the desired trajectory.


Author(s):  
Gladkov S.O. ◽  
◽  
Bogdanova S.B. ◽  

In this paper, a solution to the problem of the motion of a brachistochrone in the ndimensional Euclidean space is firstly presented. The very first formulation of the problem in a two-dimensional case was proposed by J. Bernoulli in 1696. It represented an analytical description of the trajectory for the fastest rolling down under gravitational force only. Thereafter, a number of problems devoted to a brachistochrone were considered with account for gravitational forces, dry and viscous drag forces, and a possible variation in the mass of a moving body. Analytical solution to the formulated problem is presented in details by an example of the body moving along a brachistochrone in three-dimensional Cartesian coordinates. The obtained parametric solution is confirmed by a graphical interpretation of the calculated result. The formulated problem is solved for an ideal case when drag forces are neglected. If dry and viscous friction forces are taken into account, the plane shape of the brachistochrone remains the same,while the analysis of the solution becomes more complicated. When, for example, a side air flow is taken into account, the plane curve is replaced by a three-dimensional brachistochrone.


Sign in / Sign up

Export Citation Format

Share Document