On fluid flow induced by a rotating magnetic field

1965 ◽  
Vol 22 (3) ◽  
pp. 521-528 ◽  
Author(s):  
H. K. Moffatt

The interior of an insulating cylindrical container is supposed filled with an incompressible, electrically conducting, viscous fluid. An externally applied magnetic field is caused to rotate uniformly about an axis parallel to the cylinder generators (by applying two alternating components out of phase at right angles). Induced currents in the fluid give rise to a Lorentz force which drives a velocity field, which in general may have a steady and a fluctuating component. The particular case of a circular cylindrical container in a transverse magnetic field is studied in detail. Under certain reasonable assumptions, the resulting flow is shown to have only the steady component, and the distribution of this component is determined. Some conjectures are offered about the stability of this flow and about the corresponding flows in cavities of general shape.

2017 ◽  
Vol 13 (3) ◽  
pp. 13-29
Author(s):  
Jayalakshmamma D V Dinesh PA

The steady flow of an electrically conducting, viscous and incompressible fluid flow through / past a solid core surrounded by cylindrical porous medium is considered in the presence of the transverse magnetic field. The modified Brinkman and Stokes equations are used to describe the fluid flow in porous and non-porous regions respectively. The exact solution is obtained in terms of modified Bessel’s function.    The matching boundary conditions are used at the interface of the two regions along with the no-slip condition on the surface of the solid core. Further, uniform velocity away from the fluid surface is considered. The effect of magnetic field and porous parameter on the fluid flow is presented for both porous and     non-porous regions. From the obtained result it is noticed that increase in magnetic field strength, the flow is suppressed and fluid flow through porous region is observed.     Further, increase in porous


The stability under small disturbances is investigated of the two-dimensional laminar motion of an electrically conducting fluid under a transverse magnetic field. It is found that the dominating factor is the change in shape of the undisturbed velocity profile caused by the magnetic field, which depends only on the Hartmann number M . Curves of wave number against Reynolds number for neutral stability are calculated for a range of values of M ; for large values of M the calculations are similar to those which determine the stability of ordinary boundary-layer flow. The critical Reynolds number is found to rise very rapidly with increasing M , so that a transverse magnetic field has a powerful stabilizing influence on this type of flow.


2004 ◽  
Vol 22 (1) ◽  
pp. 29-33 ◽  
Author(s):  
N. RUDRAIAH ◽  
B.S. KRISHNAMURTHY ◽  
A.S. JALAJA ◽  
TARA DESAI

The Rayleigh–Taylor instability (RTI) of a laser-accelerated ablative surface of a thin plasma layer in an inertial fusion energy (IFE) target with incompressible electrically conducting plasma in the presence of a transverse magnetic field is investigated using linear stability analysis. A simple theory based on Stokes-lubrication approximation is proposed. It is shown that the effect of a transverse magnetic field is to reduce the growth rate of RTI considerably over the value it would have in the absence of a magnetic field. This is useful in the extraction of IFE efficiently.


2000 ◽  
Vol 123 (1) ◽  
pp. 31-42
Author(s):  
J. Liu ◽  
G. Talmage ◽  
J. S. Walker

The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.


2011 ◽  
Vol 25 (19) ◽  
pp. 2533-2542
Author(s):  
T. HAYAT ◽  
S. N. NEOSSI NGUETCHUE ◽  
F. M. MAHOMED

This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.


1998 ◽  
Vol 60 (3) ◽  
pp. 529-539 ◽  
Author(s):  
RENU BAJAJ ◽  
S. K. MALIK

A nonlinear thermal instability in a layer of electrically conducting fluid in the presence of a magnetic field is discussed. Steady-state bifurcation results in the formation of patterns: rolls, squares and hexagons. The stability of various patterns is also investigated. It is found that in the absence of a magnetic field only rolls are stable, but when the magnetic field strength exceeds a certain finite value, squares and hexagons also become stable.


Sign in / Sign up

Export Citation Format

Share Document