Pressure-fluctuation measurements on an oscillating circular cylinder

1979 ◽  
Vol 91 (4) ◽  
pp. 661-677 ◽  
Author(s):  
P. W. Bearman ◽  
I. G. Currie

Measurements are presented of the fluctuating pressure recorded at a point 90° from the mean position of the forward stagnation point on a circular cylinder oscillating in a water flow. The aspect ratio of the cylinder was 9·5 and the turbulence level in the free-stream was 5·5%. The cylinder Reynolds number was 2·4 × 104 and the cylinder was forced to oscillate transverse to the main flow at amplitudes up to 1·33 cylinder diameters. The reduced velocity was varied over the range 3–18 and the experiments spanned the vortex-shedding lock-in range. Measurements of phase difference between pressure and displacement show that the maximum out-of-phase lift force occurs at an amplitude of about half a diameter. Good agreement is found between measurements on forced and freely oscillating cylinders. A simple potential-flow model gives reasonable predictions of the pressure fluctuations at the body frequency and at twice the body frequency at reduced velocities away from lock-in.

1982 ◽  
Vol 119 ◽  
pp. 297-321 ◽  
Author(s):  
P. W. Bearman ◽  
E. D. Obasaju

Measurements are presented of the pressure fluctuations acting on a stationary squaresection cylinder, with the front face normal to the flow, and one forced to oscillate, transverse to a flow, at amplitudes up to 25% of the length of a side. The range of reduced velocities investigated, 4–13, includes the vortex lock-in regime. At lock-in the amplification of the coefficient of fluctuating lift is found to be much less than that found for a circular cylinder. The variation of the phase angle, between lift and displacement, is also different from that measured on a circular cylinder, and vortex-induced oscillations are possible only at the high-reduced-velocity end of the lock-in range. At reduced velocities sufficiently far below lock-in the natural vortex-shedding mode is suppressed and vortices are found to form over the side faces at the body frequency. Intermittent reattachment occurs over the side faces and, for an amplitude of oscillation equal to 10% of the length of a side face, the time-mean drag coefficient can be reduced to 60% of its fixed-cylinder value.


1971 ◽  
Vol 55 (3) ◽  
pp. 651-665 ◽  
Author(s):  
G. M. HUGHES ◽  
R. GAYMER ◽  
MARGARET MOORE ◽  
A. J. WOAKES

1. The O2 consumption and CO2 release of nine giant tortoises Testudo gigantea (weight range 118 g-35·5 kg) were measured at a temperature of about 25·5°C. Four European tortoises Testudo hermanni (weight range 640 g-2·16 kg) were also used. The mean RQ values obtained were 1·01 for T. gigantea and 0·97 for T. hermanni. These values were not influenced by activity or size. 2. The data was analysed by plotting log/log regression lines relating body weight to O2 consumption. Both maximum and minimum metabolic rates recorded for each individual T. gigantea showed a negative correlation with body weight. For active rates the relation was O2 consumption = 140·8W0·97, whereas for inactive animals O2 consumption = 45·47W0·82. 3. The maximum rates were obtained from animals that were observed to be active in the respirometer and the minimum rates from animals that remained quiet throughout. The scope for activity increased with body size, being 82 ml/kg/h for animals of 100 g and 103 ml/kg/h for 100 kg animals. The corresponding ratio between maximum and minimum rates increases from about 2 to 6 for the same weight range. 4. Values for metabolic rate in T. hermanni seem to be rather lower than in T. gigantea. Analysis of the relative proportion of the shell and other organs indicates that the shell forms about 31% of the body weight in adult T. hermanni but only about 18% in T. gigantea of similar size. The shell is not appreciably heavier in adult T. gigantea (about 20%). 5. Data obtained for inactive animals is in good agreement with results of other workers using lizards and snakes. Previous evidence suggesting that chelonians show no reduction in metabolic rate with increasing size is not considered to conflict with data obtained in the present work.


1960 ◽  
Vol 27 (2) ◽  
pp. 223-229 ◽  
Author(s):  
M. V. Morkovin

For the purposes of assessing the magnitude of flow disturbances which would affect conditions on a blunt nose of a body moving at supersonic speeds, the detached shock is approximated by a purely normal shock. The disturbances downstream of the shock are expressed in terms of the “free-stream” disturbances by considering sinusoidal fluctuations. Pressure fluctuations generated by interactions of entropy-temperature disturbances with the normal shock may be considerable at high Mach numbers, but their effect on the transition of a laminar boundary layer to a turbulent one is a matter of speculation. However, conjectures that reflections of such pressure waves between the body and the shock wave might lead to high resonant amplifications are definitely disproved.


1988 ◽  
Vol 32 (02) ◽  
pp. 83-91
Author(s):  
X. M. Wang ◽  
M. L. Spaulding

A two-dimensional potential flow model is formulated to predict the wave field and forces generated by a sere!submerged body in forced heaving motion. The potential flow problem is solved on a boundary fitted coordinate system that deforms in response to the motion of the free surface and the heaving body. The full nonlinear kinematic and dynamic boundary conditions are used at the free surface. The governing equations and associated boundary conditions are solved by a second-order finite-difference technique based on the modified Euler method for the time domain and a successive overrelaxation (SOR) procedure for the spatial domain. A series of sensitivity studies of grid size and resolution, time step, free surface and body grid redistribution schemes, convergence criteria, and free surface body boundary condition specification was performed to investigate the computational characteristics of the model. The model was applied to predict the forces generated by the forced oscillation of a U-shaped cylinder. Numerical model predictions are generally in good agreement with the available second-order theories for the first-order pressure and force coefficients, but clearly show that the third-order terms are larger than the second-order terms when nonlinearity becomes important in the dimensionless frequency range 1≤ Fr≤ 2. The model results are in good agreement with the available experimental data and confirm the importance of the third order terms.


1978 ◽  
Vol 22 (04) ◽  
pp. 203-211
Author(s):  
Nils Salvesen ◽  
C. von Kerczek

Some nonlinear aspects of the two-dimensional problem of a submerged body moving with constant speed in otherwise undisturbed water of uniform depth are considered. It is shown that a theory of Benjamin which predicts a uniform rise of the free surface ahead of the body and the lowering of the mean level of the waves behind it agrees well with experimental data. The local steady-flow problem is solved by a numerical method which satisfies the exact free-surface conditions. Third-order perturbation formulas for the downstream free waves are also presented. It is found that in sufficiently shallow water, the wavelength increases with increasing disturbance strength for fixed values of the free-stream-Froude number. This is opposite to the deepwater case where the wavelength decreases with increasing disturbance strength.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Sergey Martyushov ◽  
Ozer Igra ◽  
Tov Elperin

For evaluating the motion of a solid body in a gaseous medium, one has to know the drag constant of the body. It is therefore not surprising that this subject was extensively investigated in the past. While accurate knowledge is available for the drag coefficient of a sphere in a steady flow condition, the case where the flow is time dependent is still under investigation. In the present work the drag coefficient of a sphere placed in a shock tube is evaluated numerically. For checking the validity of the used flow model and its numerical solution, the present numerical results are compared with available experimental findings. The good agreement between present simulations and experimental findings allows usage of the present scheme in nonstationary flows.


2007 ◽  
Vol 592 ◽  
pp. 89-115 ◽  
Author(s):  
A. MILIOU ◽  
A. DE VECCHI ◽  
S. J. SHERWIN ◽  
J. M. R. GRAHAM

Three-dimensional spectral/hp computations have been performed to study the fundamental mechanisms of vortex shedding in the wake of curved circular cylinders at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder whose centreline sweeps through a quarter section of a ring and the inflow direction lies on the plane of curvature of the quarter ring: the free stream is then parallel to the geometry considered and the part of the ring that is exposed to it will be referred to as the ‘leading edge’. Different configurations were investigated with respect to the leading-edge orientation. In the case of a convex-shaped geometry, the stagnation face is the outer surface of the ring: this case exhibited fully three-dimensional wake dynamics, with the vortex shedding in the upper part of the body driving the lower end at one dominant shedding frequency for the whole cylinder span. The vortex-shedding mechanism was therefore not governed by the variation of local normal Reynolds numbers dictated by the curved shape of the leading edge. A second set of simulations were conducted with the free stream directed towards the inside of the ring, in the so-called concave-shaped geometry. No vortex shedding was detected in this configuration: it is suggested that the strong axial flow due to the body's curvature and the subsequent production of streamwise vorticity plays a key role in suppressing the wake dynamics expected in the case of flow past a straight cylinder. The stabilizing mechanism stemming from the concave curved geometry was still found to govern the wake behaviour even when a vertical extension was added to the top of the concave ring, thereby displacing the numerical symmetry boundary condition at this point away from the top of the deformed cylinder. In this case, however, the axial flow from the deformed cylinder was drawn into the wake of vertical extension, weakening the shedding process expected from a straight cylinder at these Reynolds numbers. These considerations highlight the importance of investigating flow past curved cylinders using a full three-dimensional approach, which can properly take into account the role of axial velocity components without the limiting assumptions of a sectional analysis, as is commonly used in industrial practice. Finally, towing-tank flow visualizations were also conducted and found to be in qualitative agreement with the computational findings.


Author(s):  
Bernard Molin ◽  
Fabien Remy ◽  
Alain Ledoux ◽  
Nicolas Ruiz

An experimental campaign is reported on the wave response of a rectangular barge supporting two rectangular tanks partly filled with water. Flat and chamfered tank roofs are successively tested, at varying heights above the free surfaces inside the tanks. The tests are carried out in irregular wave systems coming from abeam. The measured barge roll and sloshing motions in the tanks are compared with numerical results from a linearized potential flow model. Good agreement is reported in mild seastates. Nonlinear effects, associated with large amplitude sloshing motion and/or roof impacts, are investigated.


Author(s):  
Norikazu Sato ◽  
Mitsuyoshi Kawakami ◽  
Masahide Inagaki

Large eddy simulation (LES) of flows around a forcedoscillating circular cylinder is carried out using the Arbitrary Lagrangian-Eulerian (ALE) method and a central difference scheme for the convection terms, which is a newly proposed discretization scheme that improves the conservation properties of the mass, momentum, and especially kinetic energy. The results are compared with the measurements that are also carried out by authors, in terms of lock-in phenomenon. It is shown that the numerically predicted pressure and velocity distributions are in good agreement with the experimental data, both in the lower and the upper lock-in region, and the phase difference between the cylinder displacement and the vortex shedding is consistent with previous findings. In addition, it is clarified that the frequency range of the lock-in in LES is almost the same in width as that of the experiment, while it becomes wider in the comparative analysis, in which the QUICK scheme is employed for the convection terms. Such discrepancies between two calculations are prominent, especially in the stationary and the lower frequency region.


Sign in / Sign up

Export Citation Format

Share Document