Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics

1980 ◽  
Vol 101 (3) ◽  
pp. 493-544 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
K. B. M. Q. Zaman

The coherent structure dynamics in the near field of a circular jet has been experimentally explored by inducing ‘stable’ vortex pairing through controlled excitation (see Zaman & Hussain 1980) and applying phase-averaging techniques. Hot-wire measurements were made in a 7·62 cm air jet with laminar exit boundary layer at the Reynolds number ReD = 3·2 × 104, excited at the Strouhal number StD = 0·85. At a particular phase during the pairing process, spatial distributions of the phase-average longitudinal and lateral velocity perturbations (〈u)〉, 〈v〉), vorticity, streamlines, the coherent and background Reynolds stresses and turbulence intensities have been educed. These data have been obtained for four different locations occupied by the vortices at the same phase (preceding, during, and following the pairing event), in the region 0 < x/D < 5. Spatial distributions of these measures at four successive phases during the pairing process are also educed in an attempt to further understand the vortex-pairing dynamics. The flow physics is discussed on the basis of measurements over the physical extent of the vortical structures, phase-locked to specific phases of the pairing event and thus do not involve use of the Taylor hypothesis.The computed pseudostream functions at particular phases are compared with the corresponding streamlines drawn by the method of isoclines. Transition of the vortices is examined on the basis of vorticity diffusion, the superimposed random fluctuation field intensities and Reynolds stress and phase-locked circumferential correlation measurements. The peak vorticity drops rapidly owing to transition and interaction of the vortices during pairing but, farther downstream, the decay can be attributed to destruction of the coherent vorticity by the background turbulence Reynolds stress, especially at the locations of the latter's ‘saddle points’. Controlled excitation enhances the initial circumferential coherence of the vortical structures, but is ineffective in delaying turbulent breakdown near the end of the potential core; the breakdown appears to occur through evolution of the circumferential lobe structures. The coherent structure Reynolds stress is found to be much larger than the background turbulence Reynolds stress for 0 < x/D [lsim ] 3, but these two are comparable near the end of the jet potential core. The zone average of the coherent structure Reynolds stress over the cross-section of the merging vortex pair is much larger than that over a single vortical structure either before or after the completion of pairing. During the pairing process, such average correlations are found to be the largest at an early phase of the process while entrainment, turbulent breakdown as well as rapid diffusion of vorticity occur at a later phase. The regions of alternate positive and negative coherent Reynolds stresses associated with the structures and their interactions help explain ‘negative production’.

1981 ◽  
Vol 110 ◽  
pp. 39-71 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
K. B. M. Q. Zaman

The ‘preferred mode’ of an incompressible axisymmetric free jet has been organized through controlled perturbation, and spatial distributions of time-average as well as phase-average flow properties in the near field are documented. The excitation produces noticeable changes in the time-average measures of the jet, although these changes are less dramatic than those for the excitation producing stable vortex pairing. For different stages in the evolution of the preferred-mode coherent structure, the phase-average vorticity, coherent Reynolds stress, and incoherent turbulence intensities and Reynolds stress have been educed through phase-locked hot-wire measurements, over the spatial extent of the structure and without invoking the Taylor hypothesis. For a particular stage of the evolution (i.e. when the structure is centred at x/D ≃ 3) the distributions of these quantities have been compared for both initially laminar and fully turbulent exit boundary layers, and for four jet Reynolds numbers. The relative merits of the coherent structure streamline and pseudo-stream-function patterns, as compared with phase-average velocity contours, for structure boundary identification have been discussed. The structure shape and size agree closely with those inferred from the average streamline pattern of the natural structure educed by Yule (1978).These data as well as τ-spectra show that even excitation at the preferred mode cannot sustain the initially organized large-scale coherent structure beyond eight diameters from the jet exit. The background turbulence is organized by the coherent motions in such a way that the maximum rate of decrease of the coherent vorticity occurs at the structure centres which are the saddle points of the background-turbulence Reynolds-stress distributions. The structure centres are also the locations of peak phase-average turbulence intensities. The evolving shape of the structure as it travels downstream helps explain the transverse variations of the wavelength and convection velocity across the mixing layer. The coherent structure characteristics are found to be independent of whether the initial boundary layer is laminar or turbulent, but depend somewhat on the jet Reynolds number. With increasing Reynolds number, the structure decreases in the streamwise length and increases in the radial width and becomes relatively more energetic, and more efficient in the production of coherent Reynolds stress.


1980 ◽  
Vol 98 (1) ◽  
pp. 97-135 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
S. J. Kleis ◽  
M. Sokolov

The mechanics of a spark-induced coherent structure (called a ‘spot’) in the turbulent mixing layer of a 12.7 cm diameter incompressible air jet has been investigated through phase-locked measurements at three streamwise stations. Phase averages have been obtained from 200 realizations of X-wire (time-series) data after these are optimally time-aligned with respect to one another through an iterative process of maximization of cross-correlation of individual realizations with the ensemble average. Realizations that are grossly out of alignment owing to turbulence-induced distortions have been rejected; the rejection ratio increases with increasing radial position. Data include phase-average time series of background turbulence intensities, coherent and background Reynolds stresses, vorticity and intermittency at different transverse positions. Spatial distributions of these properties over the extent of the spot have been presented as contour maps. The computed pseudo-stream-functions have been compared with the phase-average streamlines inferred from the measured distributions of the velocity vector. Comparison with the phase-average intermittency contours show that the pseudo-stream-functions are reliable and, even though the integration involved produces smoothed-out stream functions, are most useful in deducing the structure dynamics and its convection velocity.The spark-induced spot is an elongated large-scale coherent vortical structure spanning the entire thickness of the mixing layer, which moves downstream at a convection velocity of about 0.68Ue. The dynamics of the turbulent mixing layer spot, whose signature is buried in the large-amplitude background fluctuations, is much more complicated than that of the boundary-layer spot. The spot transports jet-core fluid outwards at its front and entrains ambient fluid primarily at its back; the outward-momentum transport dominates the inward transport. The Reynolds stress contribution by the spot structure is noticeably larger than that due to the background turbulence. The coherent structure vorticity is significantly modified by the structure-induced organization of the background Reynolds stress at the locations of ‘saddle points’ of the latter's distribution. The vorticity, intermittency and other turbulence measures, zone averaged over the extent of the spot, compare well with the time-average values, thus suggesting that the spark-induced ‘spot’ is probably not different from a naturally occurring large-scale coherent structure.


2019 ◽  
Vol 131 (2) ◽  
pp. 739-765
Author(s):  
Nima Fallah Jouybari ◽  
T. Staffan Lundström ◽  
J. Gunnar I. Hellström

AbstractThe aim of the present paper is to evaluate and compare the pore level hydrodynamic dispersion and effects of turbulence during flow in porous media. In order to compute these quantities, large eddy simulations of turbulent flow in five unit cells comprised of spherical particles are performed and the results are averaged over the cells. Visualizations of vortical structures reveal that the size of the turbulence structures is of the size of the pores. Investigations furthermore yield that volume-averaged values of the hydrodynamic dispersion are of the same order as the Reynolds stress within the pores. It is also shown that the effect of intra-pore turbulence and hydrodynamic dispersion on the redistribution of macroscopic momentum within the porous medium is negligible compared to Forchheimer term. A discussion is provided on the accuracy of the eddy viscosity hypothesis in the modeling of the volume-averaged intra-pore Reynolds stresses. Finally, the effect of variation in the pore-scale geometry on the turbulence structures and averaged values of hydrodynamic dispersion and Reynolds stress is investigated.


1996 ◽  
Vol 118 (4) ◽  
pp. 622-629 ◽  
Author(s):  
J. G. Moore ◽  
S. A. Schorn ◽  
J. Moore

Moore et al. measured the six Reynolds stresses in a tip leakage vortex in a linear turbine cascade. Stress tensor analysis, as used in classical mechanics, has been applied to the measured turbulence stress tensors. Principal directions and principal normal stresses are found. A solid surface model, or three-dimensional glyph, for the Reynolds stress tensor is proposed and used to view the stresses throughout the tip leakage vortex. Modeled Reynolds stresses using the Boussinesq approximation are obtained from the measured mean velocity strain rate tensor. The comparison of the principal directions and the three-dimensional graphic representations of the strain and Reynolds stress tensors aids in the understanding of the turbulence and what is required to model it.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Andrew Laban ◽  
Seyed Sobhan Aleyasin ◽  
Mark Francis Tachie ◽  
Mike Koupriyanov

The objective of this paper is to investigate the effects of nozzle spacing on the mean velocity and higher-order turbulent statistics of free twin round jets produced from sharp contraction nozzles. The experiments were performed in an air chamber where four nozzle spacing ratios, S/d = 2.8, 4.1, 5.5, and 7.1, were investigated at a fixed Reynolds number of 10,000. A planar particle image velocimetry (PIV) system was used to conduct the velocity measurements. The results show that downstream of the potential core, a reduction in spacing ratio leads to an earlier and more intense interaction between the jets, indicated by enhanced half-velocity width spread rate in the inner shear layers and a significant rise of turbulent intensities and vorticity thickness along the symmetry plane. A reduction in spacing ratio, however, confines the ambient fluid entrainment along the inner shear layers leading to a reduced core jet velocity decay rate. The closer proximity of the jets also leads to the decrease of Reynolds stresses in the inner shear layers but not in the outer shear layers. The Reynolds stress ratios along the jet centerline reveal the highest anisotropy in the potential core region.


1991 ◽  
Vol 130 ◽  
pp. 98-100
Author(s):  
P. Pulkkinen ◽  
I. Tuominen ◽  
A. Brandenburg ◽  
Å. Nordlund ◽  
R.F. Stein

AbstractThree-dimensional hydrodynamic simulations are carried out in a rectangular box. The angle between gravity and rotation axis is kept as an external parameter in order to study the latitude-dependence of convection. Special attention is given to the horizontal Reynolds stress and the ∧-effect (Rüdiger, 1989). The results of the simulations are compared with observations and theory and a good agreement is found.


Sign in / Sign up

Export Citation Format

Share Document