Forces on cylinders in viscous oscillatory flow at low Keulegan-Carpenter numbers

1985 ◽  
Vol 154 ◽  
pp. 337-356 ◽  
Author(s):  
P. W. Bearman ◽  
M. J. Downie ◽  
J. M. R. Graham ◽  
E. D. Obasaju

This paper presents a comparison between theory and experiment for the in-line forces on cylinders of general cross-section in planar oscillatory flows of small amplitude. The theoretical analysis evaluates corrections to the standard inviscid inertial force at low Keulegan-Carpenter numbers which arise from the presence of viscous laminar boundary layers and from the development of vortex shedding. The boundary-layer contribution due to both skin friction and displacement effects is calculated to first order in the Stokes parameter β−½. The contribution to the in-line force from separation and vortex shedding, for which the results presented only apply to sharp-edged bodies, is taken from previous work on vortex shedding from isolated edges using the discrete vortex modelling technique. The resulting force has components both in phase with the fluid acceleration (inertia) and in phase with the velocity (drag).The theoretical results are compared to measurements taken in a [xcup ]-tube water channel on a number of cylinders of different cross-section including circular cylinders and sharp-edged sections. The comparisons suggest that the theory is valid for Keulegan–Carpenter numbers below about 3 and for moderately high values of the β parameter.

Author(s):  
Chang-Kyu Rheem ◽  
Koichiro Kato

The characteristics of VIV response of rotating circular cylinders in flow had been investigated by both experiment and numerical simulation. In the experiment, the motions of a flexible circular cylinder pipe installed in a circulation water channel were measured. In simulation, a Discrete Vortex Method had been used to estimate hydrodynamic forces acting on a rigid circular cylinder. When a cylinder rotates in flow, a rotation frequency becomes important added to natural frequency and vortex shedding frequency. The deflection of a flexble pipe peaked when the frequency ratio of rotation frequency to natural frequency was between 1.0 and 1.5. This is similar to increment of oscillation amplitude by a resonance of natural vibration and vortex shedding. The peak oscillation frequency of a rotating circular cylinder in flow decreased with increase in rotation number. The main axis of cylinder oscillation turned in the rotation direction.


1993 ◽  
Vol 248 ◽  
pp. 267-296 ◽  
Author(s):  
Kimon Roussopoulos

This paper describes experiments undertaken to study in detail the control of vortex shedding from circular cylinders at low Reynolds numbers by using feedback to stabilize the wake instability. Experiments have been performed both in a wind tunnel and in an open water channel with flow visualization. It has been found that feedback control is able to delay the onset of the wake instability, rendering the wake stable at Reynolds numbers about 20% higher than otherwise. At higher flow rates, however, it was not possible to use single-channel feedback to stabilize the wake - although, deceptively, it was possible to reduce the unsteadiness recorded by a near-wake sensor. When control is applied to a long span only the region near the control sensor is controlled. The results presented in this paper generally support the analytical results of other researchers.


1981 ◽  
Vol 32 (1) ◽  
pp. 48-71 ◽  
Author(s):  
P.K. Stansby

SummaryA discrete-vortex representation of the wake of a circular cylinder, in which vortices are convected in a potential-flow calculation and maintain their identities unless they approach one another or a surface closely, predicts many of the unsteady flow features and is computationally more efficient than other schemes. The mean rate of shedding of vorticity is adjusted to be compatible with experiments at a high subcritical Reynolds number of 3 × 104 and the model gives reasonable predictions of separation, drag, lift, Strouhal number and vorticity loss in the formation region. The method is extended to accommodate a second cylinder and many of the surprising features which have been observed experimentally with two cylinders in a side-by-side arrangement are reproduced.


1969 ◽  
Vol 36 (2) ◽  
pp. 370-372 ◽  
Author(s):  
D. W. Sallet

Equations for the absolute dimensions of the Karman vortex street are developed in terms of the coefficient of drag and the Strouhal number of the vortex shedding bluff body. The body is assumed to be of large slenderness ratio and of uniform cross section. The predicted vortex spacings are compared with the experimental results of other investigators for circular cylinders, flat plates, and a wedge.


1971 ◽  
Vol 46 (4) ◽  
pp. 749-756 ◽  
Author(s):  
M. Gaster

Experiments on slightly tapered models of circular cross-section have shown that the vortex wake structure exists in a number of discrete cells having different shedding frequencies. Within each cell shedding is regular and periodic, the frequency being somewhat lower than that from a parallel cylinder of the same diameter. A similar type of wake behaviour has also been observed on a parallel model in a non-uniform mean flow. These results suggest that the discontinuities in the shedding law observed by Tritton could arise through non-uniformities in the flow.


2000 ◽  
Vol 122 (4) ◽  
pp. 715-719 ◽  
Author(s):  
D. K. Lee

The singularity system to represent two circular cylinders poised under different ambient flow fields is considered in the present research. The singularity system, composed of a series of singularities, has to be truncated for numerical calculations. A rational criterion to determine how many terms of this series should be retained to maintain the prescribed accuracy is provided through analysis of the converging property of the series. A particular emphasis is put on how to deal with the discrete vortex model of a boundary layer, this possibility being the basis for the development of a tool to simulate vortex shedding from a structure composed of two circular cylinders. The principle in obtaining the present singularity system can be applied to more-than-two-cylinders structures. Only the series becomes more complex with an increase in the number of cylinders. [S0098-2202(00)01704-1]


2020 ◽  
Vol 7 (3) ◽  
pp. 52-56
Author(s):  
MMATMATISA JALILOV ◽  
◽  
RUSTAM RAKHIMOV ◽  

This article discusses the analysis of the general equations of the transverse vibration of a piecewise homogeneous viscoelastic plate obtained in the “Oscillation of inlayer plates of constant thickness” [1]. In the present work on the basis of a mathematical method, the approached theory of fluctuation of the two-layer plates, based on plate consideration as three dimensional body, on exact statement of a three dimensional mathematical regional problem of fluctuation is stood at the external efforts causing cross-section fluctuations. The general equations of fluctuations of piecewise homogeneous viscoelastic plates of the constant thickness, described in work [1], are difficult on structure and contain derivatives of any order on coordinates x, y and time t and consequently are not suitable for the decision of applied problems and carrying out of engineering calculations. For the decision of applied problems instead of the general equations it is expedient to use confidants who include this or that final order on derivatives. The classical equations of cross-section fluctuation of a plate contain derivatives not above 4th order, and for piecewise homogeneous or two-layer plates the elementary approached equation of fluctuation is the equation of the sixth order. On the basis of the analytical decision of a problem the general and approached decisions of a problem are under construction, are deduced the equation of fluctuation of piecewise homogeneous two-layer plates taking into account rigid contact on border between layers, and also taking into account mechanical and rheological properties of a material of a plate. The received theoretical results for the decision of dynamic problems of cross-section fluctuation of piecewise homogeneous two-layer plates of a constant thickness taking into account viscous properties of their material allow to count more precisely the is intense-deformed status of plates at non-stationary external loadings.


2001 ◽  
Vol 45 (02) ◽  
pp. 150-163
Author(s):  
Gregory Zilman ◽  
Touvia Miloh

Synthetic aperture radar (SAR) ship wake images in light wind and calm sea conditions frequently appear in the form of a bright V with a half-angle of 2 to 3 deg. Sophisticated and conflicting explanations of this phenomenon, based on the Bragg scattering mechanism, have been proposed. There is a belief that the narrow V-wake is not a part of the Kelvin wake. An alternative approach, which is not generally accepted, suggests that short divergent Kelvin waves may contribute to the V-wake imaging although these waves are mixed with unsteady surface waves generated by the ship-induced turbulence. Ship-generated divergent waves contaminated by surfactants and their radar backscattering cross section are studied. The hull of the ship is represented by a single layer of hydrodynamic singularities. The Green function of a point source moving below a free surface covered by surfactants is derived. A closed-form asymptotic solution for the far ship wave wake is obtained. It is used to calculate analytically the corresponding radar backscattering cross section. The radiative, viscous, and surfactant-induced decay of the V-wake brightness along the V-arms is discussed. The theoretical results are compared against available experimental data.


1991 ◽  
Vol 35 (03) ◽  
pp. 250-253
Author(s):  
Apostolos Papanikolaou

A method has been presented recently by Venkat and Spaulding to solve the nonlinear boundary-value problem of oscillating two-dimensional cylinders of arbitrary cross section on the free surface of a fluid. The method relies on a second-order finite-difference technique with a modified Euler method for the time domain and a successive over-relaxation procedure for the spatial domain. The authors compare their numerical results with those of other authors (theoretical and experimental), as they have published data for specialized forms like a wedge, circular cylinders, and ship-like sections in forced heave motion (references [4] to [7] and [22], [23] of the paper).


Sign in / Sign up

Export Citation Format

Share Document