Vortex shedding from circular cylinders at low Reynolds numbers

1971 ◽  
Vol 46 (4) ◽  
pp. 749-756 ◽  
Author(s):  
M. Gaster

Experiments on slightly tapered models of circular cross-section have shown that the vortex wake structure exists in a number of discrete cells having different shedding frequencies. Within each cell shedding is regular and periodic, the frequency being somewhat lower than that from a parallel cylinder of the same diameter. A similar type of wake behaviour has also been observed on a parallel model in a non-uniform mean flow. These results suggest that the discontinuities in the shedding law observed by Tritton could arise through non-uniformities in the flow.

2014 ◽  
Vol 751 ◽  
pp. 1-37 ◽  
Author(s):  
Ming Zhao ◽  
Liang Cheng

AbstractOscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds numbers is simulated numerically by solving the two-dimensional Navier–Stokes (NS) equations using a finite-element method (FEM). The aim of this study is to identify the flow regimes of the two-cylinder system at different gap arrangements and Keulegan–Carpenter numbers (KC). Simulations are conducted at seven gap ratios $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}G$ ($G=L/D$ where $L$ is the cylinder-to-cylinder gap and $D$ the diameter of a cylinder) of 0.5, 1, 1.5, 2, 3, 4 and 5 and KC ranging from 1 to 12 with an interval of 0.25. The flow regimes that have been identified for oscillatory flow around a single cylinder are also observed in the two-cylinder system but with different flow patterns due to the interactions between the two cylinders. In the side-by-side arrangement, the vortex shedding from the gap between the two cylinders dominates when the gap ratio is small, resulting in the gap vortex shedding (GVS) regime, which is different from any of the flow regimes identified for a single cylinder. For intermediate gap ratios of 1.5 and 2 in the side-by-side arrangement, the vortex shedding mode from one side of each cylinder is not necessarily the same as that from the other side, forming a so-called combined flow regime. When the gap ratio between the two cylinders is sufficiently large, the vortex shedding from each cylinder is similar to that of a single cylinder. In the tandem arrangement, when the gap between the two cylinders is very small, the flow regimes are similar to that of a single cylinder. For large gap ratios in the tandem arrangement, the vortex shedding flows from the gap side of the two cylinders interact and those from the outer sides of the cylinders are less affected by the existence of the other cylinder and similar to that of a single cylinder. Strong interaction between the vortex shedding flows from the two cylinders makes the flow very irregular at large KC values for both side-by-side and tandem arrangements.


1993 ◽  
Vol 248 ◽  
pp. 267-296 ◽  
Author(s):  
Kimon Roussopoulos

This paper describes experiments undertaken to study in detail the control of vortex shedding from circular cylinders at low Reynolds numbers by using feedback to stabilize the wake instability. Experiments have been performed both in a wind tunnel and in an open water channel with flow visualization. It has been found that feedback control is able to delay the onset of the wake instability, rendering the wake stable at Reynolds numbers about 20% higher than otherwise. At higher flow rates, however, it was not possible to use single-channel feedback to stabilize the wake - although, deceptively, it was possible to reduce the unsteadiness recorded by a near-wake sensor. When control is applied to a long span only the region near the control sensor is controlled. The results presented in this paper generally support the analytical results of other researchers.


Author(s):  
Serhiy Yarusevych ◽  
Pierre E. Sullivan ◽  
John G. Kawall

The wake structure and vortex shedding characteristics of a NACA 0025 airfoil were studied experimentally. Wind tunnel experiments were carried out for three Reynolds numbers and three angles of attack by means of cross-wire measurements, spectral analysis and complementary surface flow visualization. Evidence of wake vortex shedding and flow separation was obtained for most of the cases examined, and dependence of these phenomena on Reynolds number and angle of attack was found. External acoustic excitation at a particular frequency was found to eliminate or reduce the separation region and decrease the airfoil wake. Moreover, the results show that the acoustic excitation has a significant effect on vortex shedding and can improve airfoil performance, i.e. produce an increase of the lift and/or decrease of the drag.


Meccanica ◽  
2021 ◽  
Author(s):  
I. Banerjee ◽  
M. E. Rosti ◽  
T. Kumar ◽  
L. Brandt ◽  
A. Russom

AbstractWe report a unique tuneable analogue trend in particle focusing in the laminar and weak viscoelastic regime of elasto-inertial flows. We observe experimentally that particles in circular cross-section microchannels can be tuned to any focusing bandwidths that lie between the “Segre-Silberberg annulus” and the centre of a circular microcapillary. We use direct numerical simulations to investigate this phenomenon and to understand how minute amounts of elasticity affect the focussing of particles at increasing flow rates. An Immersed Boundary Method is used to account for the presence of the particles and a FENE-P model is used to simulate the presence of polymers in a Non-Newtonian fluid. The numerical simulations study the dynamics and stability of finite size particles and are further used to analyse the particle behaviour at Reynolds numbers higher than what is allowed by the experimental setup. In particular, we are able to report the entire migration trajectories of the particles as they reach their final focussing positions and extend our predictions to other geometries such as the square cross section. We believe complex effects originate due to a combination of inertia and elasticity in the weakly viscoelastic regime, where neither inertia nor elasticity are able to mask each other’s effect completely, leading to a number of intermediate focusing positions. The present study provides a fundamental new understanding of particle focusing in weakly elastic and strongly inertial flows, whose findings can be exploited for potentially multiple microfluidics-based biological sorting applications.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


2007 ◽  
Vol 573 ◽  
pp. 171-190 ◽  
Author(s):  
A. DIPANKAR ◽  
T. K. SENGUPTA ◽  
S. B. TALLA

Vortex shedding behind a cylinder can be controlled by placing another small cylinder behind it, at low Reynolds numbers. This has been demonstrated experimentally by Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors also provided preliminary numerical results, modelling the control cylinder by the innovative application of boundary conditions on some selective nodes. There are no other computational and theoretical studies that have explored the physical mechanism. In the present work, using an over-set grid method, we report and verify numerically the experimental results for flow past a pair of cylinders. Apart from providing an accurate solution of the Navier–Stokes equation, we also employ an energy-based receptivity analysis method to discuss some aspects of the physical mechanism behind vortex shedding and its control. These results are compared with the flow picture developed using a dynamical system approach based on the proper orthogonal decomposition (POD) technique.


1984 ◽  
Vol 106 (1) ◽  
pp. 252-257 ◽  
Author(s):  
D. E. Metzger ◽  
C. S. Fan ◽  
S. W. Haley

Modern high-performance gas turbine engines operate at high turbine inlet temperatures and require internal convection cooling of many of the components exposed to the hot gas flow. Cooling air is supplied from the engine compressor at a cost to cycle performance and a design goal is to provide necessary cooling with the minimum required cooling air flow. In conjunction with this objective, two families of pin fin array geometries which have potential for improving airfoil internal cooling performance were studied experimentally. One family utilizes pins of a circular cross section with various orientations of the array with respect to the mean flow direction. The second family utilizes pins with an oblong cross section with various pin orientations with respect to the mean flow direction. Both heat transfer and pressure loss characteristics are presented. The results indicate that the use of circular pins with array orientation between staggered and inline can in some cases increase heat transfer while decreasing pressure loss. The use of elongated pins increases heat transfer, but at a high cost of increased pressure loss. In conjunction with the present measurements, previously published results were reexamined in order to estimate the magnitude of heat transfer coefficients on the pin surfaces relative to those of the endwall surfaces. The estimate indicates that the pin surface coefficients are approximately double the endwall values.


Sign in / Sign up

Export Citation Format

Share Document