Influence of density variations on the structure of low-speed turbulent flows: a report on Euromech 237

1989 ◽  
Vol 203 ◽  
pp. 577-593 ◽  
Author(s):  
L. Fulachier ◽  
R. Borghi ◽  
F. Anselmet ◽  
P. Paranthoen

The European Mechanics Colloquium number 237 was held at the Institut de Mécanique Statistique de la Turbulence (Université d'Aix-Marseille II) from 18 to 21 July 1988. This was the first meeting to consider the influence of density variations on turbulent flows for both non-reacting and reacting flows in a variety of configurations. Several new experiments, computational models and theoretical analyses were presented for non-reacting flows. All these approaches showed the marked effects of density variations on coherent structures in turbulent shear flows. It was found that the approximate models used for turbulent Reynolds stresses in homogeneous flows do not need to be changed for the mean flow field but predictions for variances and correlations are still rather uncertain: in fact experimental results providing such information in variable-density flows are rare. The special problem of measuring turbulence in flows with density variations was discussed. In the discussions it was agreed that there are in fact strong similarities in the effects of density gradients on the dynamics of non-reacting flows and reacting flows despite the differences in the distributions of density gradients. Participants at the meeting from industry emphasized the importance of these flows to many different kinds of industrial and environmental problems.

2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


1982 ◽  
Vol 119 ◽  
pp. 121-153 ◽  
Author(s):  
Udo R. Müller

An experimental study of a steady, incompressible, three-dimensional turbulent boundary layer approaching separation is reported. The flow field external to the boundary layer was deflected laterally by turning vanes so that streamwise flow deceleration occurred simultaneous with cross-flow acceleration. At 21 stations profiles of the mean-velocity components and of the six Reynolds stresses were measured with single- and X-hot-wire probes, which were rotatable around their longitudinal axes. The calibration of the hot wires with respect to magnitude and direction of the velocity vector as well as the method of evaluating the Reynolds stresses from the measured data are described in a separate paper (Müller 1982, hereinafter referred to as II). At each measuring station the wall shear stress was inferred from a Preston-tube measurement as well as from a Clauser chart. With the measured profiles of the mean velocities and of the Reynolds stresses several assumptions used for turbulence modelling were checked for their validity in this flow. For example, eddy viscosities for both tangential directions and the corresponding mixing lengths as well as the ratio of resultant turbulent shear stress to turbulent kinetic energy were derived from the data.


Author(s):  
Thomas Ludwig Kaiser ◽  
Kilian Oberleithner

Abstract In this paper a new method is introduced to model the transport of entropy waves and equivalence ratio fluctuations in turbulent flows. The model is based on the Navier-Stokes equations and includes a transport equation for a passive scalar, which may stand for entropy or equivalence ratio fluctuations. The equations are linearized around the mean turbulent fields, which serve as the input to the model in addition to a turbulent eddy viscosity, which accounts for turbulent diffusion of the perturbations. Based on these inputs, the framework is able to predict the linear response of the flow velocity and passive scalar to harmonic perturbations that are imposed at the boundaries of the computational domain. These in this study are fluctuations in the passive scalar and/or velocities at the inlet of a channel flow. The code is first validated against analytic results, showing very good agreement. Then the method is applied to predict the convection, mean flow dispersion and turbulent mixing of passive scalar fluctuations in a turbulent channel flow, which has been studied in previous work with Direct Numerical Simulations (DNS). Results show that our code reproduces the dynamics of coherent passive scalar transport in the DNS with very high accuracy and low numerical costs, when the DNS mean flow and Reynolds stresses are provided. Furthermore, we demonstrate that turbulent mixing has a significant effect on the transport of the passive scalar fluctuations. Finally, we apply the method to explain experimental observations of transport of equivalence ratio fluctuations in the mixing duct of a model burner.


1976 ◽  
Vol 73 (1) ◽  
pp. 165-188 ◽  
Author(s):  
H. K. Richards ◽  
J. B. Morton

Three turbulent shear flows with quadratic mean-velocity profiles are generated by using an appropriately designed honeycomb and parallel-rod grids with adjustable rod spacing. The details of two of the flow fields, with quadratic mean-velocity profiles with constant positive mean-shear gradients ($\partial^2\overline{U}_1/\partial X^2_2 >0$), are obtained, and include, in the mean flow direction, the development and distribution of mean velocities, fluctuating velocities, Reynolds stresses, microscales, integral scales, energy spectra, shear correlation coefficients and two-point spatial velocity correlation coefficients. A third flow field is generated with a quadratic mean velocity profile with constant negative mean-shear gradient ($\partial^2\overline{U}_1/\partial X^2_2 < 0$), to investigate in the mean flow direction the effect of the change in sign on the resulting field. An open-return wind tunnel with a 2 × 2 × 20 ft test-section is used.


2014 ◽  
Vol 757 ◽  
Author(s):  
Stephen B. Pope

AbstractFor inhomogeneous turbulent flows at high Reynolds number, it is shown that the redistribution term in Reynolds-stress turbulence models can be determined from the velocity–acceleration correlation. It is further shown that the drift coefficient in the generalized Langevin model (which is used in probability density function (PDF) methods) can be determined from the Reynolds stresses and the velocity–acceleration correlation. These observations are valuable, since the second moments of velocity and acceleration can be measured in experiments, in direct numerical simulations and in well-resolved large-eddy simulations (LES), and hence these turbulence-model quantities can be determined. The redistribution is closely related to the pressure–rate-of-strain, and the unknown in the PDF equation is closely related to the conditional mean pressure gradient (conditional on velocity). In contrast to the velocity–acceleration moments, these pressure statistics are much more difficult to obtain, and our knowledge of them is quite limited. It is also shown that the generalized Langevin model can be re-expressed to provide a direct connection between the drift term and the fluid acceleration. All of these results are first obtained using the constant-property Navier–Stokes equations, but it is then shown that the results are simply extended to variable-density flows.


2000 ◽  
Vol 403 ◽  
pp. 89-132 ◽  
Author(s):  
STEFAN WALLIN ◽  
ARNE V. JOHANSSON

Some new developments of explicit algebraic Reynolds stress turbulence models (EARSM) are presented. The new developments include a new near-wall treatment ensuring realizability for the individual stress components, a formulation for compressible flows, and a suggestion for a possible approximation of diffusion terms in the anisotropy transport equation. Recent developments in this area are assessed and collected into a model for both incompressible and compressible three-dimensional wall-bounded turbulent flows. This model represents a solution of the implicit ARSM equations, where the production to dissipation ratio is obtained as a solution to a nonlinear algebraic relation. Three-dimensionality is fully accounted for in the mean flow description of the stress anisotropy. The resulting EARSM has been found to be well suited to integration to the wall and all individual Reynolds stresses can be well predicted by introducing wall damping functions derived from the van Driest damping function. The platform for the model consists of the transport equations for the kinetic energy and an auxiliary quantity. The proposed model can be used with any such platform, and examples are shown for two different choices of the auxiliary quantity.


2020 ◽  
Vol 20 (4) ◽  
pp. 1281-1293
Author(s):  
Hui Cao ◽  
Chen Ye ◽  
Xu-Feng Yan ◽  
Xing-Nian Liu ◽  
Xie-Kang Wang

Abstract Glass beads were used to model permeable beds and boulders (simulated by plastic spherical balls) placed on the centre section of the bed. Flume experiments were conducted to investigate the hydrodynamics through a boulder array over impermeable and permeable beds (i.e. IMPB and PB). For background reference, hydrodynamics investigation was made over smooth beds (SB) with the boulder array. Through measuring the instantaneous velocity field, the major flow characteristics such as mean flow velocity, turbulence intensity, turbulent kinetic energy (TKE) and instantaneous Reynolds stresses (through quadrant analysis) were presented. The results show that the increase in bed permeability through decreasing the exposure height of boulders has little impact on the magnitude of streamwise velocity, but tends to decrease the near-bed velocity gradient, thus affecting the bed shear-stress. For turbulence, similar to the previous studies, the bed permeability is identified to enable a downward shift of the peak of turbulence intensity. The TKE budget analysis shows that bed permeability tends to inhibit the transport and diffusion processes of TKE generation. Finally, the quadrant analysis of turbulence structure clearly shows that the ejections (Q2) and sweeps (Q4) with and without the boulder array are dominated by turbulence structure of different scales.


1987 ◽  
Vol 179 ◽  
pp. 439-468 ◽  
Author(s):  
I. P. Castro ◽  
A. Haque

Detailed measurements within the separated shear layer behind a flat plate normal to an airflow are reported. A long, central splitter plate in the wake prevented vortex shedding and led to an extensive region of separated flow with mean reattachment some ten plate heights downstream. The Reynolds number based on plate height was in excess of 2 × 1044.Extensive use of pulsed-wire anemometry allowed measurements of all the Reynolds stresses throughout the flow, along with some velocity autocorrelations and integral timescale data. The latter help to substantiate the results of other workers obtained in separated flows of related geometry, particularly in the identification of a very low-frequency motion with a timescale much longer than that associated with the large eddies in the shear layer. Wall-skin-friction measurements are consistent with the few similar data previously published and indicate that the thin boundary layer developing beneath the separated region has some ‘laminar-like’ features.The Reynolds-stress measurements demonstrate that the turbulence structure of the separated shear layer differs from that of a plane mixing layer between two streams in a number of ways. In particular, the normal stresses all rise monotonically as reattachment is approached, are always considerably higher than the plane layer values and develop in quite different ways. Flow similarity is not a useful concept. A major conclusion is that any effects of stabilizing streamline curvature are weak compared with the effects of the re-entrainment at the low-velocity edge of the shear layer of turbulent fluid returned around reattachment. It is argued that the general features of the flow are likely to be similar to those that occur in a wide range of complex turbulent flows dominated by a shear layer bounding a large-scale recirculating region.


1995 ◽  
Vol 305 ◽  
pp. 185-218 ◽  
Author(s):  
P. G. Huang ◽  
G. N. Coleman ◽  
P. Bradshaw

The present paper addresses some topical issues in modelling compressible turbulent shear flows. The work is based on direct numerical simulation (DNS) of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the mean momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional Reynolds and Favre averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation (which ignores any true turbulent compressibility effects) is so successful in correlating compressible boundary-layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.


Author(s):  
Carlo Cossu ◽  
Yongyun Hwang

We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


Sign in / Sign up

Export Citation Format

Share Document