Particle dispersion in isotropic turbulence under Stokes drag and Basset force with gravitational settling

1991 ◽  
Vol 225 ◽  
pp. 481-495 ◽  
Author(s):  
Renwei Mei ◽  
Ronald J. Adrian ◽  
Thomas J. Hanratty

An analysis that includes the effects of Basset and gravitational forces is presented for the dispersion of particles experiencing Stokes drag in isotropic turbulence. The fluid velocity correlation function evaluated on the particle trajectory is obtained by using the independence approximation and the assumption of Gaussian velocity distributions for both the fluid and the particle, formulated by Pismen & Nir (1978). The dynamic equation for particle motion with the Basset force is Fourier transformed to the frequency domain where it can be solved exactly. It is found that the Basset force has virtually no influence on the structure of the fluid velocity fluctuations seen by the particles or on particle diffusivities. It does, however, affect the motion of the particle by increasing (reducing) the intensities of particle turbulence for particles with larger (smaller) inertia. The crossing of trajectories associated with the gravitational force tends to enhance the effect of the Basset force on the particle turbulence. An ordering of the terms in the particle equation of motion shows that the solution is valid for high particle/fluid density ratios and to 0(1) in the Stokes number.

1978 ◽  
Vol 89 (2) ◽  
pp. 241-250 ◽  
Author(s):  
R. Phythian ◽  
W. D. Curtis

The problem considered is the diffusion of a passive scalar in a ‘fluid’ in random motion when the fluid velocity field is Gaussian and statistically homogeneous, isotropic and stationary. A self-consistent expansion for the effective long-time diffusivity is obtained and the approximations derived from this series by retaining up to three terms are explicitly calculated for simple idealized forms of the velocity correlation function for which numerical simulations are available for comparison for zero molecular diffusivity. The dependence of the effective diffusivity on the molecular diffusivity is determined within this idealization. The results support Saffman's contention that the molecular and turbulent diffusion processes interfere destructively, in the sense that the total effective diffusivity about a fixed point is less than that which would be obtained if the two diffusion processes acted independently.


Author(s):  
M. Sato ◽  
M. Tanahashi ◽  
T. Miyauchi

Direct numerical simulations of homogeneous isotropic turbulence laden with particles have been conducted to clarify the relationship between particle dispersion and coherent fine scale eddies in turbulence. Dispersion of 106 particles are analyzed for several particle Stokes numbers. The spatial distributions of particles depend on their Stokes number, and the Stokes number that causes preferential concentration of particles is closely related to the time scale of coherent fine scale eddies in turbulence. On the plane perpendicular to the rotating axes of fine scale eddies, number density of particle with particular Stokes number is low at the center of the fine scale eddy, and high in the regions with high energy dissipation rate around the eddy. The maximum number density can be observed at about 1.5 to 2.0 times the eddy radius on the major axis of the fine scale eddy.


Author(s):  
Lionel Thomas ◽  
Benoiˆt Oesterle´

The dispersion of small inertial particles moving in a homogeneous, hypothetically stationary, shear flow is investigated using both theoretical analysis and numerical simulation, under one-way coupling approximation. In the theoretical approach, the previous studies are extended to the case of homogeneous shear flow with a corresponding anisotropic spectrum. As it is impossible to obtain a closed theoretical solution without some drastic simplifications, the motion of dispersed particles is also investigated using kinematic simulation where random Fourier modes are generated according to a prescribed anisotropic spectrum with a superimposed linear mean fluid velocity profile. The combined effects of particle Stokes number and dimensionless drift velocity (magnitude and direction) are investigated by computing the statistics from Lagrangian tracking of a large number of particles in many flow field realizations, and comparison is made between the observed effects in shear flow and in isotropic turbulence.


1997 ◽  
Vol 119 (1) ◽  
pp. 170-179 ◽  
Author(s):  
Renwei Mei ◽  
R. J. Adrian ◽  
T. J. Hanratty

The analysis of Reeks (1977) for particle dispersion in isotropic turbulence is extended so as to include a nonlinear drag law. The principal issue is the evaluation of the inertial time constants, βα−1, and the mean slip. Unlike what is found for the Stokesian drag, the time constants are functions of the slip velocity and are anisotropic. For settling velocity, VT, much larger than root-mean-square of the fluid velocity fluctuations, u0, the mean slip is given by VT. For VT→0, the mean slip is related to turbulent velocity fluctuation by assuming that fluctuations in βα are small compared to the mean value. An interpolation formula is used to evaluate βα and VT in regions intermediate between conditions of VT→0 and VT≫ u0. The limitations of the analysis are explored by carrying out a Monte-Carlo simulation for particle motion in a pseudo turbulence described by a Gaussian distribution and Kraichnan’s (1970) energy spectrum.


The equation describing the rate of change of the mean square vorticity in homogeneous isotropic turbulence is obtained and the terms occurring therein are discussed. A negative contribution to d͞ω 2 / dt arises from the effect of viscosity, while a positive contribution is produced by the tendency for the random diffusive motion to extend the vortex lines. This latter contribution can be related to the skewness of the probability distribution of the rate of extension of line elements of the fluid aligned in any given direction. The results of direct measurements of each of the factors appearing in the vorticity equation are then described. The measurements were made by analyzing electrically the output from a hot-wire anemometer placed downstream from a grid in a uniform stream. Both U 2 / u͞ 2 and ʎ 2 are found to increase approximately linearly with time during decay of the turbulence and their rates of change are consistent with the energy equation. The skewness factor mentioned above is approximately constant during decay, with the same value at all Reynolds numbers. It follows that the rate of increase of ͞ω 2 ¯ due to vortex extension is proportional to ( ͞ω 2 ) 3/2 , and further measurements show that the effect of viscosity has a similar dependence, so that the ratio of the two contributions to d͞ω 2 / dt remains the same throughout the decay. The viscous contribution is always the greater but the contributions tend to equality as the grid Reynolds number increases. The measurements of all terms in the vorticity equation are shown to satisfy the equation with sufficient accuracy. One of the deductions from the measurements is that the double velocity correlation function tends to a cusp at the origin as the Reynolds number increases indefinitely.


2014 ◽  
Vol 756 ◽  
pp. 870-902 ◽  
Author(s):  
Sarma L. Rani ◽  
Rohit Dhariwal ◽  
Donald L. Koch

AbstractThe probability density function (PDF) kinetic equation describing the relative motion of inertial particle pairs in a turbulent flow requires closure of the phase-space diffusion current. A novel analytical closure for the diffusion current is presented that is applicable to high-inertia particle pairs with Stokes numbers $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathit{St}}_r \gg 1$. Here ${\mathit{St}}_r$ is a Stokes number based on the time scale $\tau _r$ of eddies whose size scales with pair separation $r$. In the asymptotic limit of ${\mathit{St}}_r \gg 1$, the pair PDF kinetic equation reduces to an equation of Fokker–Planck form. The diffusion tensor characterizing the diffusion current in the Fokker–Planck equation is equal to $1/\tau _v^2$ multiplied by the time integral of the Lagrangian correlation of fluid relative velocities along particle-pair trajectories. Here, $\tau _v$ is the particle viscous relaxation time. Closure of the diffusion tensor is achieved by converting the Lagrangian correlations of fluid relative velocities ‘seen’ by pairs into Eulerian fluid-velocity correlations at pair separations that remain essentially constant during time scales of $O(\tau _r)$; the pair centre of mass, however, is not stationary and responds to eddies with time scales comparable to or smaller than $\tau _v$. For isotropic turbulence, Eulerian fluid-velocity correlations may be expressed as Fourier transforms of the velocity spectrum tensor, enabling us to derive a closed-form expression for the diffusion tensor. A salient feature of this closure is that it has a single, unique form for pair separations spanning the entire spectrum of turbulence scales, unlike previous closures that involve velocity structure functions with different forms for the integral, inertial subrange, and Kolmogorov-scale separations. Using this closure, Langevin equations, which are statistically equivalent to the Fokker–Planck equation, were solved to evolve particle-pair relative velocities and separations in stationary isotropic turbulence. The Langevin equation approach enables the simulation of the full PDF of pair relative motion, instead of only the first few moments of the PDF as is the case in a moments-based approach. Accordingly, PDFs $\varOmega (U|r)$ and $\varOmega (U_r|r)$ are computed and presented for various separations $r$, where the former is the PDF of relative velocity $U$ and the latter is the PDF of the radial component of relative velocity $U_r$, both conditioned upon the separation $r$. Consistent with the direct numerical simulation (DNS) study of Sundaram & Collins (J. Fluid Mech., vol. 335, 1997, pp. 75–109), the Langevin simulations capture the transition of $\varOmega (U|r)$ from being Gaussian at integral-scale separations to an exponential PDF at Kolmogorov-scale separations. The radial distribution functions (RDFs) computed from these simulations also show reasonable quantitative agreement with those from the DNS study of Février, Simonin & Legendre (Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, 2001).


2000 ◽  
Author(s):  
Daniel Huilier

Abstract A Lagrangian approach is developed to describe particle’s dispersion in a stationary, homogeneous and isotropic turbulent flow. Obviously, the particles’ dispersion is influenced by the fluid velocity fluctuations, which are classically simulated by a Monte Carlo process or Markov chains. However, some studies have shown the restrictions of these methods generating the fluid turbulent velocity and have suggested improvements to ensure that the Lagrangian model accounts for the three main effects governing the dispersion in gas-particle flows, namely the inertia, crossing trajectories and continuity effects. The first aim of this paper is to present an improved Lagrangian model which integrates the spatio-temporal characteristics of the fluid turbulence experienced by the particle. The agreement between the numerical results obtained and the analytical expressions derived by Wang and Stock (1993) will be very satisfying. Another interest is to investigate the role of the traditionally-neglected and troublesome added mass and history terms in numerical studies when long time dispersion of inertial particles is the primary concern. Indeed, we will observe that for a large range of values of the ratio of particle to fluid density, these non-stationary forces have statistically no influence on the characteristics of the turbulent particle dispersion and can be safely omitted.


2017 ◽  
Vol 814 ◽  
pp. 592-613 ◽  
Author(s):  
Andras Nemes ◽  
Teja Dasari ◽  
Jiarong Hong ◽  
Michele Guala ◽  
Filippo Coletti

We report on optical field measurements of snow settling in atmospheric turbulence at $Re_{\unicode[STIX]{x1D706}}=940$. It is found that the snowflakes exhibit hallmark features of inertial particles in turbulence. The snow motion is analysed in both Eulerian and Lagrangian frameworks by large-scale particle imaging, while sonic anemometry is used to characterize the flow field. Additionally, the snowflake size and morphology are assessed by digital in-line holography. The low volume fraction and mass loading imply a one-way interaction with the turbulent air. Acceleration probability density functions show wide exponential tails consistent with laboratory and numerical studies of homogeneous isotropic turbulence. Invoking the assumption that the particle acceleration has a stronger dependence on the Stokes number than on the specific features of the turbulence (e.g. precise Reynolds number and large-scale anisotropy), we make inferences on the snowflakes’ aerodynamic response time. In particular, we observe that their acceleration distribution is consistent with that of particles of Stokes number in the range $St=0.1{-}0.4$ based on the Kolmogorov time scale. The still-air terminal velocities estimated for the resulting range of aerodynamic response times are significantly smaller than the measured snow particle fall speed. This is interpreted as a manifestation of settling enhancement by turbulence, which is observed here for the first time in a natural setting.


2018 ◽  
Vol 860 ◽  
pp. 465-486 ◽  
Author(s):  
Nimish Pujara ◽  
Greg A. Voth ◽  
Evan A. Variano

We examine the dynamics of slender, rigid rods in direct numerical simulation of isotropic turbulence. The focus is on the statistics of three quantities and how they vary as rod length increases from the dissipation range to the inertial range. These quantities are (i) the steady-state rod alignment with respect to the perceived velocity gradients in the surrounding flow, (ii) the rate of rod reorientation (tumbling) and (iii) the rate at which the rod end points move apart (stretching). Under the approximations of slender-body theory, the rod inertia is neglected and rods are modelled as passive particles in the flow that do not affect the fluid velocity field. We find that the average rod alignment changes qualitatively as rod length increases from the dissipation range to the inertial range. While rods in the dissipation range align most strongly with fluid vorticity, rods in the inertial range align most strongly with the most extensional eigenvector of the perceived strain-rate tensor. For rods in the inertial range, we find that the variance of rod stretching and the variance of rod tumbling both scale as $l^{-4/3}$, where $l$ is the rod length. However, when rod dynamics are compared to two-point fluid velocity statistics (structure functions), we see non-monotonic behaviour in the variance of rod tumbling due to the influence of small-scale fluid motions. Additionally, we find that the skewness of rod stretching does not show scale invariance in the inertial range, in contrast to the skewness of longitudinal fluid velocity increments as predicted by Kolmogorov’s $4/5$ law. Finally, we examine the power-law scaling exponents of higher-order moments of rod tumbling and rod stretching for rods with lengths in the inertial range and find that they show anomalous scaling. We compare these scaling exponents to predictions from Kolmogorov’s refined similarity hypotheses.


Sign in / Sign up

Export Citation Format

Share Document