The wake from a cylinder subjected to amplitude-modulated excitation

1993 ◽  
Vol 247 ◽  
pp. 79-110 ◽  
Author(s):  
M. Nakano ◽  
D. Rockwell

Controlled, amplitude-modulated excitation of a cylinder at low Reynolds number (Re equals; 136) in the cross-stream direction generates several states of response of the near wake including: a locked-in wake structure, which is periodic at the modulation frequency; a period-doubled wake structure, which is periodic at a frequency half the modulation frequency; and a destabilized structure of the wake, which is periodic at the modulation frequency, but involves substantial phase modulations of the vortex formation relative to the cylinder displacement. The occurrence of each of these states depends upon the dimensionless modulation frequency, as well as the nominal frequency and amplitude of excitation. Transition through states of increasing disorder can be attained by either decreasing the modulation frequency or increasing the amplitude of excitation at a constant value of nominal frequency. These states of response in the near wake are crucial in determining whether the far wake is highly organized or incoherent. Both of these extremes are attainable by proper selection of the parameters of excitation.

1994 ◽  
Vol 266 ◽  
pp. 93-119 ◽  
Author(s):  
M. Nakano ◽  
D. Rockwell

A cylinder is subjected to frequency-modulated (FM) excitation and the structure of its wake is characterized in terms of the modulation frequency and the frequency deviation. It is possible to destabilize or restabilize the degree of organization of the vortical structures in the near wake and thereby substantially manipulate the spectral content, relative to the case of purely sinusoidal excitation. These processes of destabilization and restabilization are attainable by varying the frequency deviation while holding the modulation frequency constant or vice versa. A phase-locked periodicity of the nearwake response is attainable at the period of the modulation frequency, as well as at double its period. This phase-locked periodicity, or lack of it, is related to the degree of organization of the wake. The structure of the far wake is strongly dependent upon the nature of the near wake modification. Either coherent or destabilized wake structure can be induced in the far wake, at a given value of nominal excitation frequency, by employing appropriate FM excitation.


Author(s):  
Mark L. Sutkowy ◽  
Anshuman Pandey ◽  
Matthew McCrink ◽  
James W. Gregory

1988 ◽  
Vol 190 ◽  
pp. 491-512 ◽  
Author(s):  
M. F. Unal ◽  
D. Rockwell

Vortex shedding from a circular cylinder is examined over a tenfold range of Reynolds number, 440 ≤ Re ≤ 5040. The shear layer separating from the cylinder shows, to varying degrees, an exponential variation of fluctuating kinetic energy with distance downstream of the cylinder. The characteristics of this unsteady shear layer are interpreted within the context of an absolute instability of the near wake. At the trailing-end of the cylinder, the fluctuation amplitude of the instability correlates well with previously measured values of mean base pressure. Moreover, this amplitude follows the visualized vortex formation length as Reynolds number varies. There is a drastic decrease in this near-wake fluctuation amplitude in the lower range of Reynolds number and a rapid increase at higher Reynolds number. These trends are addressed relative to the present, as well as previous, observations.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Lei Sun ◽  
Yong Huang ◽  
Xiwei Wang ◽  
Xiang Feng ◽  
Wei Xiao

Abstract The flow past a triangular cylinder is one of the fundamental flows and widely utilized in flame stabilization and heat transfer. In this study, the near wake and vortex characteristics of the flow past an equilateral triangular cylinder are experimentally measured by a high frequency particle image velocimetry (PIV) system at 3 kHz. The triangular cylinder is installed in a wind tunnel with Reynolds numbers ranging from 10,700 to 17,700. The Reynolds-averaged and phase-averaged methods are utilized to analyze the flow field. Based on the flow fields, the length of the vortex formation region is about 1.5 times of the length of the equilateral triangle side. The residence time of a vortex in the vortex formation region is equal to a vortex shedding period. The stream wise velocity of the vortex core center downstream the vortex formation is about 0.8 times of the freestream velocity, which is slightly larger than the value about 0.7 for the flow past a circular cylinder at the same Reynolds number. The maximum tangential velocity at the periphery of the vortex core maybe occurs slightly in advance of the vortex reaching the boundary of the vortex formation region. The normalized lengths of the recirculation zone of the triangular cylinder keep nearly unchanged and are about 1.55 to 1.9 times of those of the circular cylinder at the same Reynolds number. The normalized normal wise instead of stream wise turbulence intensity has stronger effects on the distribution of the normalized turbulent kinetic energy.


Experiments on the near wake of a cylinder will be discribed in an attempt to present a coherent picture of the events encountered as the Reynolds number increases from small values up to values of a few thousand. Much work on this subject has already been done, but there are gaps in our description of these flows as well as more fundamental deficiencies in our understanding of them. The subject has been reviewed several times and most recently by Berger & Wille (1972) whose paper covers much of the ground that will be discussed again here. The present work may be regarded as built upon this latest review. I remember with gratitude many helpful discussions with the late Rudolph Wille who contributed so much to this subject. The investigation has concentrated on circular cylinders, but the wakes of bluff cylinders of different cross sectional shapes have also been observed. Bluff cylinders in general are considered in §§4 and 5, together with the effect of splitter plates on circular cylinders in §9. The experiments concern, almost exclusively, flow visualization of the wakes by means of dye washed from the bodies. The patterns of dye observed are, therefore, filament line representations of the flow leaving the separation lines on the body. It must be stressed that the dye does not make visible the vorticity bearing fluid because at low Reynolds number, vorticity diffuses considerably more rapidly than does dye. The ratio of the molecular diffusivity of momentum to that of mass of dye is of the order of 100.


1996 ◽  
Vol 322 ◽  
pp. 21-49 ◽  
Author(s):  
C. K. Chyu ◽  
D. Rockwell

The instantaneous structure of the near wake of a cylinder subjected to small-amplitude perturbations is characterized using high-image-density particle image velocimetry. Emphasis is on control of the small-scale shear-layer vortices, which feed into the Kármán vortices. Modifications of the Kármán vortex formation are classified according to patterns of modulated and locked-on shear-layer vortices. The formation length of the Kármán vortices can be dramatically shortened and, in the limiting case, occur adjacent to the base of the cylinder when it is perturbed at the inherent instability frequency of the shear layer and its subharmonics. Moreover, the induced shear-layer vortices can lead to large-amplitude transverse undulations of the entire near-wake region during formation of the Kármán vortices.These variations of the near-wake structure are further elucidated by considering the transient response of the wake, induced by abrupt cessation and onset of periodic motion of the cylinder. Distinctive intermediate states of the wake arise during relaxation to its asymptotic state; such relaxation requires a very large number of periods of the inherent instability of the shear layer.


2012 ◽  
Vol 702 ◽  
pp. 488-520 ◽  
Author(s):  
Richard D. Sandberg

AbstractNumerical experiments are conducted of turbulent supersonic axisymmetric wakes at Mach number $M= 2. 46$ and Reynolds number, based on free-stream velocity and base diameter, ${\mathit{Re}}_{D} = 1\ensuremath{\times} 1{0}^{5} $. Direct numerical simulations (DNS) are used to study the effect of approach flow conditions, and of specific azimuthal modes, on the near-wake behaviour. To that end, DNS are performed with laminar and turbulent approach boundary layers, and additional turbulent approach flow DNS with reduced circumferential size are conducted to deliberately eliminate certain azimuthal/helical modes. DNS with turbulent approach flow show an increased turning angle and increased growth of the separating shear layer, leading to a shorter recirculation region, a stronger recompression shock system, and ultimately good agreement with experimental data at considerably higher Reynolds number. A similar wake structure is found for laminar and turbulent inflow conditions, giving further evidence of the wake structure being a consequence of the global near-wake instabilities and not a result of upstream conditions. Stability analyses of two-dimensional basic states are carried out by computing the temporal pulse response using forced Navier–Stokes simulations to investigate which azimuthal modes are dominant for fully turbulent wakes and how the stability behaviour is influenced by the choice of basic state. Using the time- and azimuthally averaged data from three-dimensional DNS with turbulent inflow as basic state, an absolute instability of the axisymmetric mode was found and helical modes $m= 4, 5, 6$ were found to be linearly most unstable, in contrast to results obtained earlier using an axisymmetric flow solution as the basic state. The addition of a turbulence viscosity in the forced DNS retains most of the stability characteristics but reduces the wavenumber of the linearly most-amplified modes.


Author(s):  
M. W. Yiu ◽  
H. Li ◽  
Y. Zhou

When Reynolds number, Re (≡U∞d/v, where U∞ is the free stream velocity, d is the cylinder diameter and v is the kinematic viscosity of the fluid), is in the range of 103 to 104, there is a large variation in the near-wake formation region in terms of the base pressure coefficient, the fluctuating lift coefficient, the vortex formation length, which have previously been connected to the generation of small-scale Kelvin-Helmholtz vortices. This work aims to investigate how this Re variation affects the three components of vorticity in terms of time-averaged and small-scale structures and also to provide a relatively complete set of 3-D vorticity data. All three components of vorticity data were simultaneously measured in the intermediate region of the turbulent wake using a multi-wire vorticity probe. It is observed that the root-mean-square (rms) values of the three vorticity components increase with Re, especially the streamwise component, which shows a large jump from Re = 5×103 to 104. At the central frequencies of f0 and 2f0, the contributions from the large-scale and intermediate-scale structures of ωzi2/(ωz2)max decreases 13% and 16% respectively as the Re. increases. However, at the central frequency of 16f0, the contribution of the small-scale structure of ωzi2/(ωz2)max dramatic suddenly 7% increase at Re = 5×103 to 104. The result suggest the generation of small-scale Kelvin-Helmholtz vortices in the spanwise structure. The effect of Re on vorticity signals, spectra, contributions from the wavelet components to the vorticity variances are also examined.


Sign in / Sign up

Export Citation Format

Share Document