Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants

1995 ◽  
Vol 289 ◽  
pp. 295-314 ◽  
Author(s):  
Marios M. Fyrillas ◽  
Andrew J. Szeri

A new theoretical formulation is developed for the effects of surfactants on mass transport across the dynamic interface of a bubble which undergoes spherically symmetric volume oscillations. Owing to the presence of surfactants, the Henry's law boundary condition is no longer applicable; it is replaced by a flux boundary condition that features an interfacial resistance that depends on the concentration of surfactant molecules on the interface. The driving force is the disequilibrium partitioning of the gas between free and dissolved states across the interface. As in the clean surface problem analysed recently (Fyrillas & Szeri 1994), the transport problem is split into two parts: the smooth problem and the oscillatory problem. The smooth problem is treated using the method of multiple scales. An asymptotic solution to the oscillatory problem, valid in the limit of large Péclet number, is developed using the method of matched asymptotic expansions. By requiring that the outer limit of the inner approximation match zero, the splitting into smooth and oscillatory problems is determined unambiguously in successive powers of [weierp ]−1/2, where [weierp ] is the Péclet number. To leading order, the clean surface solution is recovered. Continuing to higher order it is shown that the concentration field depends on RI[weierp ]−1/2, where RI is the (dimensionless) interfacial resistance associated with the presence of surfactants. Although the influence of surfactants appears at higher order in the small parameter, surfactants are shown to have a very significant effect on bubble growth rates owing to the fact that the magnitude of RI is approximately the same as the magnitude of [weierp ]1/2 at conditions of practical interest. Hence the higher-order ‘corrections’ happen numerically to be of the same magnitude as the leading-order, clean surface problem. This is the fundamental reason for major increases in the bubble growth rates associated with the addition of surfactants. This is in contrast to the case of a still, surfactant-covered bubble, in which the first-order correction to the growth rate is of order RI[weierp ]−1 and presents a [weierp ]−1/2 correction. Finally, although existing experimental results have shown only enhancement of bubble growth in the presence of a surfactant the present theory suggests that it is possible for a surfactant, characterized by weak dependence of interfacial resistance on surface concentration, to inhibit rather than enhance the growth of bubbles by rectified diffusion.

2019 ◽  
Vol 31 (5) ◽  
pp. 763-781
Author(s):  
EHUD YARIV

AbstractWe consider two-dimensional mass transport to a finite absorbing strip in a uniform shear flow as a model of surface-based biosensors. The quantity of interest is the Sherwood number Sh, namely the dimensionless net flux onto the strip. Considering early-time absorption, it is a function of the Péclet number Pe and the Damköhler number Da, which, respectively, represent the characteristic magnitude of advection and reaction relative to diffusion. With a view towards modelling nanoscale biosensors, we consider the limit Pe«1. This singular limit is handled using matched asymptotic expansions, with an inner region on the scale of the strip, where mass transport is diffusively dominated, and an outer region at distances that scale as Pe-1/2, where advection enters the dominant balance. At the inner region, the mass concentration possesses a point-sink behaviour at large distances, proportional to Sh. A rescaled concentration, normalised using that number, thus possesses a universal logarithmic divergence; its leading-order correction represents a uniform background concentration. At the outer region, where advection by the shear flow enters the leading-order balance, the strip appears as a point singularity. Asymptotic matching with the concentration field in that region provides the Sherwood number as $${\rm{Sh}} = {\pi \over {\ln (2/{\rm{P}}{{\rm{e}}^{1/2}}) + 1.0559 + \beta }},$$ wherein β is the background concentration. The latter is determined by the solution of the canonical problem governing the rescaled inner concentration, and is accordingly a function of Da alone. Using elliptic-cylinder coordinates, we have obtained an exact solution of the canonical problem, valid for arbitrary values of Da. It is supplemented by approximate solutions for both small and large Da values, representing the respective limits of reaction- and transport-limited conditions.


1993 ◽  
Vol 03 (06) ◽  
pp. 1477-1486
Author(s):  
JAMES M. ROTENBERRY ◽  
ANTONMARIA A. MINZONI

We study the axial heat and mass transfer in a highly diffusive tubular chemical reactor in which a simple reaction is occurring. The steady state solutions of the governing equations are studied using matched asymptotic expansions, the theory of dynamical systems, and by calculating the solutions numerically. In particular, the effect of varying the Peclet and Damköhler numbers (P and D) is investigated. A simple expression for the approximate location of the transition layer for large Peclet number is derived and its accuracy tested against the numerical solution. The stability of the steady states is examined by calculating the eigenvalues and eigenfunctions of the linearized equations. It is shown that a Hopf bifurcation of the CSTR model (i.e., the limit as the P approaches zero) can be continued up to order 1 in the Peclet number. Furthermore, it is shown numerically that for appropriate values of the Peclet number, the Damköhler number, and B (the heat of reaction) these Hopf bifurcations merge with the limit points of an "S–shaped" bifurcation curve in a higher order singularity controlled by the Bogdanov–Takens normal form. Consequently, there must exist a finite amplitude, nonuniform, stable periodic solution for parameter values near this singularity. The existence of higher order degeneracies is also explored. In particular, it is shown for D ≪ 1 that no value of P exists where two pairs of complex conjugate eigenvalues of the steady state solutions can cross the imaginary axis simultaneously.


2021 ◽  
Vol 60 (3) ◽  
pp. 229-240
Author(s):  
Jetzabeth Ramírez Sabag ◽  
Dennys Armando López Falcón

ResumenLas soluciones de la Ecuación de Advección-Dispersión son usadas frecuentemente para describir el transporte de solutos a través de medios porosos, considerando adsorción en equilibrio, de tipo lineal y reversible. Para indicar algunas sugerencias acerca de este tema, se hizo una revisión de las soluciones analíticas disponibles. Hay soluciones para Problemas con Condiciones de Frontera, de primer y tercer-tipo en la entrada así como de primer y segundo-tipo a la salida. Se analiza el comportamiento de las soluciones equivalentes, para sistemas finitos y semi-infinitos, observando que las soluciones de los sistemas semi-infinitos se aproximan a las correspondientes de los sistemas finitos conforme la condición de frontera de salida en el infinito se aproxima a la ubicación de medición del sistema finito. Solamente se presentan las soluciones analíticas con condiciones de frontera de segundo-tipo a la salida, ya que son iguales a las correspondientes soluciones analíticas con frontera de primer-tipo a la salida, para ambos tipos de condiciones de frontera de entrada usadas. Un análisis paramétrico, basado en el número de Peclet, muestra que todas las soluciones convergen cuando el número de Peclet es mayor que veinte. Los sistemas investigados deben tener un número de Peclet mayor que cinco para usar con confianza las soluciones de la Ecuación de Advección-Dispersión para describir el transporte de soluto en medios porosos.Palabras Clave: Ecuación de Advección-Difusión, Soluciones Analíticas, Transporte de Solutos Reactivos, Medios Porosos.AbstractThe solutions of Advection-Dispersion Equation are frequently used to describe solute transport through porous media when considering lineal and reversible equilibrium adsorption. To notice some warnings about this item, a review of analytical solutions available was done. There are solutions for Boundary Value Problems with first and third-type inlet boundary conditions as well as first and second-type outlet boundary condition. The behavior of equivalent solutions for finite and semi-infinite systems are analyzed, observing that semi-infinite system solutions approximates to the corresponding finite ones as the “infinite” outlet boundary condition approach to the finite measurement location. Because the analytical solutions with a first-type outlet boundary condition are equal to the corresponding analytical solutions with a second-type one, for both inlet boundary condition type used, only the latter is presented. A parametric analysis based on Peclet number shows that all solutions converge for Peclet number greater than twenty. Systems under research must have Peclet number greater than five to use confidently the solutions of Advection-Dispersion Equation to describe reactive solute transport through porous media.Keywords: Advection-Diffusion Equation, Analytical solutions, Reactive Solute Transport, Porous Media.


2003 ◽  
Author(s):  
G. F. Dargush ◽  
M. M. Grigoriev

Higher-order boundary element methods (BEM) are presented for time-dependent convective diffusion in two dimensions. The time-dependent convective diffusion free-space fundamental solutions originally proposed by Carslaw and Jaeger are used to obtain the boundary integral formulation. Boundary element method solutions up to the Peclet number 106 are obtained for an example problem of unsteady convection-diffusion that possesses an exact solution. We investigate the convergence rate and accuracy of the higher-order boundary element formulations. An extremely high accuracy of the BEM solutions for highly convective flows is demonstrated. Moreover, it is shown that the use of time-dependent convective kernels provides an automatic upwinding for the entire range of Peclet numbers and also leads to very efficient algorithms as the Peclet number increases.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Donald Pettit ◽  
Pietro Fontana

Abstract Sodium chloride (NaCl) grown in terrestrial conditions form hopper cubes under diffusion controlled mass transport (Péclet number: ≪ 1), high supersaturations (S > 1.45), and fast growth rates (10–110 µm/s) over periods only maintainable for seconds to minutes yielding hopper cubes typically <250 µm. Here we report on NaCl hopper cubes grown in microgravity on the International Space Station (ISS) by evaporation of brine. They grew under diffusion limited mass transport (Péclet number: ~4 × 10−4 − 4) at low supersaturation (S < 1.002) and slow growth rates (0.34–1 µm/min) over periods of days to weeks. Due to the lack of sedimentation, symmetrical hopper cubes, 2–8 mm were produced. The most striking differences between microgravity and terrestrial gravity hopper growth conditions are low supersaturation and slow growth rates over long periods of time. Large, 1–20 cm naturally occurring symmetrical NaCl hopper cubes are found suspended in brine soaked mud, hypothesized to be produced in a slow growth, diffusion dominated environment. We speculate these geologic conditions allow for hopper growth similar to that of microgravity.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 319-324 ◽  
Author(s):  
H. Rubin ◽  
A. Rabideau

This study presents an approximate analytical model, which can be useful for the prediction and requirement of vertical barrier efficiencies. A previous study by the authors has indicated that a single dimensionless parameter determines the performance of a vertical barrier. This parameter is termed the barrier Peclet number. The evaluation of barrier performance concerns operation under steady state conditions, as well as estimates of unsteady state conditions and calculation of the time period requires arriving at steady state conditions. This study refers to high values of the barrier Peclet number. The modeling approach refers to the development of several types of boundary layers. Comparisons were made between simulation results of the present study and some analytical and numerical results. These comparisons indicate that the models developed in this study could be useful in the design and prediction of the performance of vertical barriers operating under conditions of high values of the barrier Peclet number.


Sign in / Sign up

Export Citation Format

Share Document