scholarly journals Ice-Sheet Erosion—A Result of Maximum Conditions?

1979 ◽  
Vol 23 (89) ◽  
pp. 402-404 ◽  
Author(s):  
D. E. Sugden

Abstract Understanding the relationship between the morphology of former ice-sheet beds and glaciological processes is handicapped by the difficulty of establishing which stage of a cycle of ice-sheet growth and decay is responsible for most erosion. Discussions at this conference and in the literature display a variety of opinions, some favouring periods of ice-sheet build up, others periods of fluctuations, and still others steady-state maximum conditions. Here it is suggested that there is geomorphological evidence which points to the dominance of maximum conditions. Along the eastern margins of the Laurentide and Greenland ice sheets there is a sharp discontinuity between Alpine relief which stood above the ice-sheet surface at the maximum and plateau scenery which was covered by the ice sheet. Often the two types of relief are adjacent and yet separated by an altitudinal difference of only 100–200 m. The existence of an abrupt rather than gradual transition from one relief type to the other suggests that most glacial sculpture must have taken place while the ice sheet was at its maximum extent. In other geomorphological situations where high mountains were submerged by ice sheets, the major erosional landforms are frequently found to relate to ice sheets rather than to local mountain glaciers, again suggesting the dominance of erosion during full ice-sheet conditions. Finally, the identification of patterns of glacial erosion on an ice-sheet scale in North America and Greenland points to erosion when the ice sheets were fully expanded, rather than to the variable flow conditions associated with growth or decay. If ice-sheet erosion is accepted as being a result of maximum conditions, then it places certain constraints on glacial theory, for example the need to develop theories of glacial erosion which apply beneath ice thicknesses of several thousand metres. It also suggests that the use of steady-state models of ice sheets is likely to be a profitable way of relating glaciological processes to the morphology of former ice-sheet beds.

1979 ◽  
Vol 23 (89) ◽  
pp. 402-404
Author(s):  
D. E. Sugden

AbstractUnderstanding the relationship between the morphology of former ice-sheet beds and glaciological processes is handicapped by the difficulty of establishing which stage of a cycle of ice-sheet growth and decay is responsible for most erosion. Discussions at this conference and in the literature display a variety of opinions, some favouring periods of ice-sheet build up, others periods of fluctuations, and still others steady-state maximum conditions. Here it is suggested that there is geomorphological evidence which points to the dominance of maximum conditions.Along the eastern margins of the Laurentide and Greenland ice sheets there is a sharp discontinuity between Alpine relief which stood above the ice-sheet surface at the maximum and plateau scenery which was covered by the ice sheet. Often the two types of relief are adjacent and yet separated by an altitudinal difference of only 100–200 m. The existence of an abrupt rather than gradual transition from one relief type to the other suggests that most glacial sculpture must have taken place while the ice sheet was at its maximum extent. In other geomorphological situations where high mountains were submerged by ice sheets, the major erosional landforms are frequently found to relate to ice sheets rather than to local mountain glaciers, again suggesting the dominance of erosion during full ice-sheet conditions. Finally, the identification of patterns of glacial erosion on an ice-sheet scale in North America and Greenland points to erosion when the ice sheets were fully expanded, rather than to the variable flow conditions associated with growth or decay.If ice-sheet erosion is accepted as being a result of maximum conditions, then it places certain constraints on glacial theory, for example the need to develop theories of glacial erosion which apply beneath ice thicknesses of several thousand metres. It also suggests that the use of steady-state models of ice sheets is likely to be a profitable way of relating glaciological processes to the morphology of former ice-sheet beds.


2015 ◽  
Vol 52 (11) ◽  
pp. 966-979 ◽  
Author(s):  
Karin Ebert

The erosional impacts of former ice sheets on the low-relief bedrock surfaces of Northern Hemisphere shields are not well understood. This paper assesses the variable impacts of glacial erosion on a portion of Baffin Island, eastern Canadian Arctic, between 68° and 72°N and 66° and 80°W. This tilted shield block was covered repeatedly by the Laurentide Ice Sheet during the late Cenozoic. The impact of ice-sheet erosion is examined with GIS analyses using two geomorphic parameters: lake density and terrain ruggedness. The resulting patterns generally conform to published data from other remote sensing studies, geological observations, cosmogenic exposure ages, and the distribution of the chemical index of alteration for tills. Lake density and terrain ruggedness are thereby demonstrated to be useful quantitative indicators of variable ice-sheet erosional impacts across Baffin Island. Ice-sheet erosion was most effective in the lower western parts of the lowlands, in a west–east-oriented band at around 350–400 m a.s.l., and in fjord-onset zones in the uplifted eastern region. Above the 350–400 m a.s.l. band and between the fjord-onset zones, ice-sheet erosion was not sufficient to create extensive ice-roughened or streamlined bedrock surfaces. The exception — where lake density and terrain ruggedness indicate that ice-sheet erosion had a scouring effect all across the study area — was in an area from Foxe Basin to Home Bay with elevations <400 m a.s.l. These morphological contrasts link to former ice-sheet basal thermal regimes during the Pleistocene. The zone of low glacial erosion surrounding the cold-based Barnes Ice Cap probably represents the ice cap’s greater extent during successive Pleistocene cold stages. Inter-fjord plateaus with few ice-sheet bedforms remained cold-based throughout multiple Pleistocene glaciations. In contrast, zones of high lake density and high terrain ruggedness are a result of the repeated development of fast-flowing, erosive ice in warm-based zones beneath the Laurentide Ice Sheet. These zones are linked to greater ice thickness over western lowland Baffin Island. However, adjacent lowland surfaces with similar elevations of non-eroded, weakly eroded, and ice-scoured shield bedrock indicate that—even in areas of high lake density and terrain ruggedness—the total depth of ice sheet erosion did not exceed 50 m.


2018 ◽  
Vol 857 ◽  
pp. 648-680 ◽  
Author(s):  
Samuel S. Pegler

A long-standing open question in glaciology concerns the propensity for ice sheets that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under buoyancy. This paper addresses the processes by which a buoyancy-driven mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet instability – is suppressed by lateral stresses acting on its floating component (the ice shelf). The key results are to demonstrate the transition between a mode of stable (easily reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to tipped (almost irreversible) retreat across a critical parametric threshold. The conditions for triggering tipped retreat can be controlled by the calving position and other properties of the ice-shelf profile and can be largely independent of basal stress, in contrast to principles established from studies of unbuttressed grounding-line dynamics. The stability and recovery conditions introduced by lateral stresses are analysed by developing a method of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid assessment of the steady-state positions, their natures and the conditions for secondary grounding, giving clear visualisations of global stabilisation conditions. A further result is to reveal the possibility of a third structural component of a marine ice sheet that lies intermediate to the fully grounded and floating components. The region forms an extended grounding area in which the ice sheet lies very close to flotation, and there is no clearly distinguished grounding line. The formation of this region generates an upsurge in buttressing that provides the most feasible mechanism for reversal of a tipped grounding line. The results of this paper provide conceptual insight into the phenomena controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the potential to dominate future contributions to global sea-level rise.


2014 ◽  
Vol 26 (6) ◽  
pp. 724-741 ◽  
Author(s):  
Stewart S.R. Jamieson ◽  
Chris R. Stokes ◽  
Neil Ross ◽  
David M. Rippin ◽  
Robert G. Bingham ◽  
...  

AbstractIn 1976, David Sugden and Brian John developed a classification for Antarctic landscapes of glacial erosion based upon exposed and eroded coastal topography, providing insight into the past glacial dynamics of the Antarctic ice sheets. We extend this classification to cover the continental interior of Antarctica by analysing the hypsometry of the subglacial landscape using a recently released dataset of bed topography (BEDMAP2). We used the existing classification as a basis for first developing a low-resolution description of landscape evolution under the ice sheet before building a more detailed classification of patterns of glacial erosion. Our key finding is that a more widespread distribution of ancient, preserved alpine landscapes may survive beneath the Antarctic ice sheets than has been previously recognized. Furthermore, the findings suggest that landscapes of selective erosion exist further inland than might be expected, and may reflect the presence of thinner, less extensive ice in the past. Much of the selective nature of erosion may be controlled by pre-glacial topography, and especially by the large-scale tectonic structure and fluvial valley network. The hypotheses of landscape evolution presented here can be tested by future surveys of the Antarctic ice sheet bed.


2020 ◽  
Author(s):  
Zhongshi Zhang ◽  
Qing Yan ◽  
Ran Zhang ◽  
Florence Colleoni ◽  
Gilles Ramstein ◽  
...  

&lt;p&gt;Did a Beringian ice sheet once exist? This question was hotly debated decades ago until compelling evidence for an ice-free Wrangel Island excluded the possibility of an ice sheet forming over NE Siberia-Beringia during the Last Glacial Maximum (LGM). Today, it is widely believed that during most Northern Hemisphere glaciations only the Laurentide-Eurasian ice sheets across North America and Northwest Eurasia became expansive, while Northeast Siberia-Beringia remained ice-sheet-free. However, recent recognition of glacial landforms and deposits on Northeast Siberia-Beringia and off the Siberian continental shelf has triggered a new round of debate.These local glacial features, though often interpreted as local activities of ice domes on continental shelves and mountain glaciers on continents, &amp;#160;&amp;#160;could be explained as an ice sheet over NE Siberia-Beringia. Only based on the direct glacial evidence, the debate can not be resolved. Here, we combine climate and ice sheet modelling with well-dated paleoclimate records from the mid-to-high latitude North Pacific to readdress the debate. Our simulations show that the paleoclimate records are not reconcilable with the established concept of Laurentide-Eurasia-only ice sheets. On the contrary, a Beringian ice sheet over Northeast Siberia-Beringia causes feedbacks between atmosphere and ocean, the result of which well explains the climate records from around the North Pacific during the past four glacial-interglacial cycles. Our ice-climate modelling and synthesis of paleoclimate records from around the North Pacific argue that the Beringian ice sheet waxed and waned rapidly in the past four glacial-interglacial cycles and accounted for ~10-25 m ice-equivalent sea-level change during its peak glacials. The simulated Beringian ice sheet agrees reasonably with the direct glacial and climate evidence from Northeast Siberia-Beringia, and reconciles the paleoclimate records from around the North Pacific. With the Beringian ice sheet involved, the pattern of past NH ice sheet evolution is more complex than previously thought, in particular prior to the LGM.&lt;/p&gt;


2011 ◽  
Vol 57 (202) ◽  
pp. 345-354 ◽  
Author(s):  
Guillaume Jouvet ◽  
Jacques Rappaz ◽  
Ed Bueler ◽  
Heinz Blatter

AbstractThe existence of solutions of the non-sliding shallow-ice-sheet equation on a flat horizontal bed with a mass balance linearly depending on altitude is proven for fixed margins. Free-margin solutions for the same mass balance do not exist. Fixed-margin solutions show unbounded shear stress and nonzero mass flux at the margin. Steady-state solutions with realistic margins, vanishing ice flux and vanishing shear stress are found numerically for ice sheets with Weertman-type sliding.


1984 ◽  
Vol 5 ◽  
pp. 18-22 ◽  
Author(s):  
Heinz Blatter ◽  
Wilfried Haeberli

Modelling temperature distribution in non-temperate mountain glaciers presents problems not normally encountered when modelling ice sheets or ice shelves. These problems are mainly concerned with numerical instabilities caused by the high, nonuniform gradients of various input parameters (geometry, mass balance, surface temperature, and flow velocity). Steady-state solutions must be used to check and complete data sets, before using models of greater complexity to calculate temperature fields in a more realistic way. Test runs with a computer model, which allows for true two-dimensional solutions and realistic velocity fields, are described for two examples from the Swiss Alps. These steady-state calculations illustrate, in a semi-quantitative way, that advection of cold ice by glacier flow strongly influences the temperature distribution in both an existing large valley glacier with a cold accumulation zone (Grenzgletscher), and a large piedmont glacier of the last ice age, around 18 ka BP (Rheingletscher). Non-steady-state models are being prepared and tested for future calculations.


Sign in / Sign up

Export Citation Format

Share Document