Speech in noise: a practical test procedure

1992 ◽  
Vol 106 (2) ◽  
pp. 105-110 ◽  
Author(s):  
M. Jayaram ◽  
D. M. Baguley ◽  
D. A. Moffat

AbstractA simple and effective speech in noise test is described with clinical findings for patients with normal hearing, cochlear and retrocochlear pathologies and auditory dysacusis. The test utilizes material readily available in Audiology and ENT Departments. It was possible to obtain useful diagnostic information in patients who complain of hearing loss, but who demonstrate normalaudiometric thresholds and normal speech in quiet discrimination.

2006 ◽  
Vol 17 (03) ◽  
pp. 157-167 ◽  
Author(s):  
Rachel A. McArdle ◽  
Richard H. Wilson

The purpose of this study was to determine the list equivalency of the 18 QuickSIN™ (Quick Speech in Noise test) lists. Individuals with normal hearing (n = 24) and with sensorineural hearing loss (n = 72) were studied. Mean recognition performances on the 18 lists by the listeners with normal hearing were 2.8 to 4.3 dB SNR (signal-to-noise ratio), whereas the range was 10.0 to 14.3 dB SNR for the listeners with hearing loss. The psychometric functions for each list showed high performance variability across lists for listeners with hearing loss but not for listeners with normal hearing. For listeners with hearing loss, Lists 4, 5, 13, and 16 fell outside of the critical difference. The data from this study suggest nine lists that provide homogenous results for listeners with and without hearing loss. Finally, there was an 8.7 dB difference in performances between the two groups indicating a more favorable signal-to-noise ratio required by the listeners with hearing loss to obtain equal performance.


2021 ◽  
Author(s):  
Satyabrata Parida ◽  
Michael G. Heinz

SUMMARYListeners with sensorineural hearing loss (SNHL) struggle to understand speech, especially in noise, despite audibility compensation. These real-world suprathreshold deficits are hypothesized to arise from degraded frequency tuning and reduced temporal-coding precision; however, peripheral neurophysiological studies testing these hypotheses have been largely limited to in-quiet artificial vowels. Here, we measured single auditory-nerve-fiber responses to a natural speech sentence in noise from anesthetized chinchillas with normal hearing (NH) or noise-induced hearing loss (NIHL). Our results demonstrate that temporal precision was not degraded, and broader tuning was not the major factor affecting peripheral coding of natural speech in noise. Rather, the loss of cochlear tonotopy, a hallmark of normal hearing, had the most significant effects (both on vowels and consonants). Because distorted tonotopy varies in degree across etiologies (e.g., noise exposure, age), these results have important implications for understanding and treating individual differences in speech perception for people suffering from SNHL.


2004 ◽  
Vol 116 (4) ◽  
pp. 2395-2405 ◽  
Author(s):  
Mead C. Killion ◽  
Patricia A. Niquette ◽  
Gail I. Gudmundsen ◽  
Lawrence J. Revit ◽  
Shilpi Banerjee

2013 ◽  
Vol 24 (04) ◽  
pp. 258-273 ◽  
Author(s):  
Ken W. Grant ◽  
Therese C. Walden

Background: Traditional audiometric measures, such as pure-tone thresholds or unaided word-recognition in quiet, appear to be of marginal use in predicting speech understanding by hearing-impaired (HI) individuals in background noise with or without amplification. Suprathreshold measures of auditory function (tolerance of noise, temporal and frequency resolution) appear to contribute more to success with amplification and may describe more effectively the distortion component of hearing. However, these measures are not typically measured clinically. When combined with measures of audibility, suprathreshold measures of auditory distortion may provide a much more complete understanding of speech deficits in noise by HI individuals. Purpose: The primary goal of this study was to investigate the relationship among measures of speech recognition in noise, frequency selectivity, temporal acuity, modulation masking release, and informational masking in adult and elderly patients with sensorineural hearing loss to determine whether peripheral distortion for suprathreshold sounds contributes to the varied outcomes experienced by patients with sensorineural hearing loss listening to speech in noise. Research Design: A correlational study. Study Sample: Twenty-seven patients with sensorineural hearing loss and four adults with normal hearing were enrolled in the study. Data Collection and Analysis: The data were collected in a sound attenuated test booth. For speech testing, subjects' verbal responses were scored by the experimenter and entered into a custom computer program. For frequency selectivity and temporal acuity measures, subject responses were recorded via a touch screen. Simple correlation, step-wise multiple linear regression analyses and a repeated analysis of variance were performed. Results: Results showed that the signal-to-noise ratio (SNR) loss could only be partially predicted by a listener's thresholds or audibility measures such as the Speech Intelligibility Index (SII). Correlations between SII and SNR loss were higher using the Hearing-in-Noise Test (HINT) than the Quick Speech-in-Noise test (QSIN) with the SII accounting for 71% of the variance in SNR loss for the HINT but only 49% for the QSIN. However, listener age and the addition of suprathreshold measures improved the prediction of SNR loss using the QSIN, accounting for nearly 71% of the variance. Conclusions: Two standard clinical speech-in-noise tests, QSIN and HINT, were used in this study to obtain a measure of SNR loss. When administered clinically, the QSIN appears to be less redundant with hearing thresholds than the HINT and is a better indicator of a patient's suprathreshold deficit and its impact on understanding speech in noise. Additional factors related to aging, spectral resolution, and, to a lesser extent, temporal resolution improved the ability to predict SNR loss measured with the QSIN. For the HINT, a listener's audibility and age were the only two significant factors. For both QSIN and HINT, roughly 25–30% of the variance in individual differences in SNR loss (i.e., the dB difference in SNR between an individual HI listener and a control group of NH listeners at a specified performance level, usually 50% word or sentence recognition) remained unexplained, suggesting the need for additional measures of suprathreshold acuity (e.g., sensitivity to temporal fine structure) or cognitive function (e.g., memory and attention) to further improve the ability to understand individual variability in SNR loss.


2015 ◽  
Vol 20 (Suppl. 1) ◽  
pp. 31-37 ◽  
Author(s):  
Ruth M. Reeder ◽  
Jamie Cadieux ◽  
Jill B. Firszt

The study objective was to quantify abilities of children with unilateral hearing loss (UHL) on measures that address known deficits for this population, i.e. speech understanding in quiet and noise, and sound localisation. Noise conditions varied by noise type and source location. Parent reports of real-world abilities were also obtained. Performance was compared to gender- and age-matched normal hearing (NH) peers. UHL performance was poorer and more varied compared to NH peers. Among the findings, age correlated with localisation ability for UHL but not NH participants. Low-frequency hearing in the better ear of UHL children was associated with performance in noise; however, there was no relation for NH children. Considerable variability was evident in the outcomes of children with UHL and needs to be understood as future treatment options are considered.


2020 ◽  
Vol 29 (3S) ◽  
pp. 564-576 ◽  
Author(s):  
Alessia Paglialonga ◽  
Edoardo Maria Polo ◽  
Marco Zanet ◽  
Giulia Rocco ◽  
Toon van Waterschoot ◽  
...  

Purpose The aim of this study was to develop and evaluate a novel, automated speech-in-noise test viable for widespread in situ and remote screening. Method Vowel–consonant–vowel sounds in a multiple-choice consonant discrimination task were used. Recordings from a professional male native English speaker were used. A novel adaptive staircase procedure was developed, based on the estimated intelligibility of stimuli rather than on theoretical binomial models. Test performance was assessed in a population of 26 young adults (YAs) with normal hearing and in 72 unscreened adults (UAs), including native and nonnative English listeners. Results The proposed test provided accurate estimates of the speech recognition threshold (SRT) compared to a conventional adaptive procedure. Consistent outcomes were observed in YAs in test/retest and in controlled/uncontrolled conditions and in UAs in native and nonnative listeners. The SRT increased with increasing age, hearing loss, and self-reported hearing handicap in UAs. Test duration was similar in YAs and UAs irrespective of age and hearing loss. The test–retest repeatability of SRTs was high (Pearson correlation coefficient = .84), and the pass/fail outcomes of the test were reliable in repeated measures (Cohen's κ = .8). The test was accurate in identifying ears with pure-tone thresholds > 25 dB HL (accuracy = 0.82). Conclusion This study demonstrated the viability of the proposed test in subjects of varying language in terms of accuracy, reliability, and short test time. Further research is needed to validate the test in a larger population across a wider range of languages and hearing loss and to identify optimal classification criteria for screening purposes.


Author(s):  
Carla Matos Silva ◽  
Carolina Fernandes ◽  
Clara Rocha ◽  
Telmo Pereira

Background: Impairment in speech perception is a common feature of older adults. This study aimed at evaluating the acute and sub-acute (after three months) effects of auditory training on central auditory processing in older people with hearing loss. Methods: A nonrandomized study was conducted enrolling 15 older adults with hearing loss and an average age of 78.6 ± 10.9 years. All participants underwent a baseline otoscopy, tympanogram, audiogram and speech-in-noise test with a signal-noise ratio (SNR) of 10 and 15 dB. Afterwards, auditory training intervention was implemented consisting of 10 training sessions over 5 weeks. Participants were divided into two groups: group 1 (G1) underwent auditory training based on a speech-in-noise test; group 2 (G2) underwent a filtered-speech test. Auditory processing was evaluated at baseline (T0) immediately after the intervention (T1) and 3 months after the intervention (T2). Results: Group 1 were quite efficient regardless of the SNR in the right ear with statistically significant differences from T0 to T1 (p = 0.003 and p = 0.006 for 10 dB and 15 dB, respectively) and T0 to T2 (p = 0.011 and 0.015 for 10 dB and 15 dB, respectively). As for the left ear, the increase of success was statistically significant for the SNR of 10 dB and 15 dB from T0 to T1 (p = 0.001 and p = 0.014, respectively) and from T0 to T2 (p = 0.016 and p = 0.003). In G2, there was a significant variation only from T0 for T1 in the left ear for an SNR of 10 dB (p = 0.001). Conclusion: Speech perception in noise significantly improved after auditory training in old adults.


2005 ◽  
Vol 14 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Thomas G. Dolan ◽  
Dennis O’Loughlin

Purpose: To determine how amplified earmuffs affect the intelligibility of speech in noise for people with hearing loss, and to determine how various brands of amplified earmuffs compare in terms of speech intelligibility and electroacoustic response. Method: The Hearing in Noise Test (HINT) was used to measure the intelligibility of speech for 10 participants with hearing loss when they listened in a background of recorded industrial noise at 85 dBA. Participants listened with 3 different sets of amplified earmuffs (Peltor Tactical 7-S, Elvex COM 55, and Bilsom 707 Impact II), with a set of passive earmuffs (E-A-R Ultra 9000), and with ears unoccluded. Two measurements of sentence threshold were obtained under each of the 5 listening conditions. Gain was measured electroacoustically across a range of input levels and frequencies for each amplified earmuff. Results: Electroacoustic measurements indicated that each electronic earmuff amplified at low input levels and attenuated at high input levels. However, gain characteristics varied greatly across devices. HINT sentence thresholds were not significantly different across the 5 listening conditions or across the 2 trials. Conclusion: Results suggest that each type of earmuff can be used to reduce the noise exposure of people with hearing loss without compromising their ability to understand speech.


2010 ◽  
Vol 21 (02) ◽  
pp. 090-109 ◽  
Author(s):  
Richard H. Wilson ◽  
Rachel McArdle ◽  
Mavie B. Betancourt ◽  
Kaileen Herring ◽  
Teresa Lipton ◽  
...  

Background: The most common complaint of adults with hearing loss is understanding speech in noise. One class of masker that may be particularly useful in the assessment of speech-in-noise abilities is interrupted noise. Interrupted noise usually is a continuous noise that has been multiplied by a square wave that produces alternating intervals of noise and silence. Wilson and Carhart found that spondaic word thresholds for listeners with normal hearing were 28 dB lower in an interrupted noise than in a continuous noise, whereas listeners with hearing loss experienced only an 11 dB difference. Purpose: The purpose of this series of experiments was to determine if a speech-in-interrupted-noise paradigm differentiates better (1) between listeners with normal hearing and listeners with hearing loss and (2) among listeners with hearing loss than do traditional speech-in-continuous-noise tasks. Research Design: Four descriptive/quasi-experimental studies were conducted. Study Sample: Sixty young adults with normal hearing and 144 older adults with pure-tone hearing losses participated. Data Collection and Analysis: A 4.3 sec sample of speech-spectrum noise was constructed digitally to form the 0 interruptions per second (ips; continuous) noise and the 5, 10, and 20 ips noises with 50% duty cycles. The noise samples were mixed digitally with the Northwestern University Auditory Test No. 6 words at selected signal-to-noise ratios and recorded on CD. The materials were presented through an earphone, and the responses were recorded and analyzed at the word level. Similar techniques were used for the stimuli in the remaining experiments. Results: In Experiment 1, using 0 ips as the reference condition, the listeners with normal hearing achieved 34.0, 30.2, and 28.4 dB escape from masking for 5, 10, and 20 ips, respectively. In contrast, the listeners with hearing loss only achieved 2.1 to 2.4 dB escape from masking. Experiment 2 studied the 0 and 5 ips conditions on 72 older listeners with hearing loss, who were on average 13 yr younger and more varied in their hearing loss than the listeners in Experiment 1. The mean escape from masking in Experiment 2 was 7 dB, which is 20–25 dB less than the escape achieved by listeners with normal hearing. Experiment 3 examined the effects that duty cycle (0–100% in 10% steps) had on recognition performance in the 5 and 10 ips conditions. On the 12 young listeners with normal hearing, (1) the 50% correct point increased almost linearly between the 0 and 60% duty cycles (slope = 4.2 dB per 10% increase in duty cycle), (2) the slope of the function was steeper between 60 and 80% duty cycles, and (3) about the same masking was achieved for the 80–100% duty cycles. The data from the listeners with hearing loss were inconclusive. Experiment 4 varied the interburst ratios (0, –6, –12, –24, –48, and –∞ dB) of 5 ips noise and evaluated recognition performance by 24 young adults. The 50% points were described by a linear regression (R 2 = 0.98) with a slope of 0.55 dB/dB. Conclusion: The current data indicate that interrupted noise does provide a better differentiation both between listeners with normal hearing and listeners with hearing loss and among listeners with hearing loss than is provided by continuous noise.


Sign in / Sign up

Export Citation Format

Share Document